These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38587036)
21. Quantitative Delineation of the Low Energy Decomposition Pathway for Lithium Peroxide in Lithium-Oxygen Battery. Dutta A; Ito K; Nomura A; Kubo Y Adv Sci (Weinh); 2020 Oct; 7(19):2001660. PubMed ID: 33042767 [TBL] [Abstract][Full Text] [Related]
22. Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries. Liang Z; Lu YC J Am Chem Soc; 2016 Jun; 138(24):7574-83. PubMed ID: 27228413 [TBL] [Abstract][Full Text] [Related]
23. Recent advances in understanding of the mechanism and control of Li Lyu Z; Zhou Y; Dai W; Cui X; Lai M; Wang L; Huo F; Huang W; Hu Z; Chen W Chem Soc Rev; 2017 Oct; 46(19):6046-6072. PubMed ID: 28857099 [TBL] [Abstract][Full Text] [Related]
24. Impact of a Gold Nanocolloid Electrolyte on Li Luo Z; Li F; Hu C; Li D; Cao Y; Scott K; Gong X; Luo K ACS Appl Mater Interfaces; 2021 Jan; 13(3):4062-4071. PubMed ID: 33428393 [TBL] [Abstract][Full Text] [Related]
26. Noticeable Role of TFSI Giacco D; Carboni M; Brutti S; Marrani AG ACS Appl Mater Interfaces; 2017 Sep; 9(37):31710-31720. PubMed ID: 28853551 [TBL] [Abstract][Full Text] [Related]
27. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Liu P; Han J; Guo X; Ito Y; Yang C; Ning S; Fujita T; Hirata A; Chen M Sci Rep; 2018 Feb; 8(1):3134. PubMed ID: 29453422 [TBL] [Abstract][Full Text] [Related]
28. Chemical Instability of Dimethyl Sulfoxide in Lithium-Air Batteries. Kwabi DG; Batcho TP; Amanchukwu CV; Ortiz-Vitoriano N; Hammond P; Thompson CV; Shao-Horn Y J Phys Chem Lett; 2014 Aug; 5(16):2850-6. PubMed ID: 26278088 [TBL] [Abstract][Full Text] [Related]
29. Amphi-Active Superoxide-Solvating Charge Redox Mediator for Highly Stable Lithium-Oxygen Batteries. Kim J; Jeong J; Jung GY; Lee J; Lee JE; Baek K; Kang SJ; Kwak SK; Hwang C; Song HK ACS Appl Mater Interfaces; 2022 Sep; 14(36):40793-40800. PubMed ID: 36044267 [TBL] [Abstract][Full Text] [Related]
30. Intrinsically Optimizing Charge Transfer via Tuning Charge/Discharge Mode for Lithium-Oxygen Batteries. Liu W; Shen Y; Yu Y; Lu X; Zhang W; Huang Z; Meng J; Huang Y; Guo Z Small; 2019 May; 15(19):e1900154. PubMed ID: 30977973 [TBL] [Abstract][Full Text] [Related]
31. Structural and electronic properties of small lithium peroxide clusters in view of the charge process in Li-O Hou B; Lei X; Gan Z; Zhong S; Liu G; Ouyang C Phys Chem Chem Phys; 2019 Sep; 21(36):19935-19943. PubMed ID: 31475717 [TBL] [Abstract][Full Text] [Related]
32. A PtRu catalyzed rechargeable oxygen electrode for Li-O2 batteries: performance improvement through Li2O2 morphology control. Yang Y; Liu W; Wang Y; Wang X; Xiao L; Lu J; Zhuang L Phys Chem Chem Phys; 2014 Oct; 16(38):20618-23. PubMed ID: 25158000 [TBL] [Abstract][Full Text] [Related]
33. Isotopic Depth Profiling of Discharge Products Identifies Reactive Interfaces in an Aprotic Li-O Nishioka K; Morimoto K; Kusumoto T; Harada T; Kamiya K; Mukouyama Y; Nakanishi S J Am Chem Soc; 2021 May; 143(19):7394-7401. PubMed ID: 33945262 [TBL] [Abstract][Full Text] [Related]
34. Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries. McCloskey BD; Valery A; Luntz AC; Gowda SR; Wallraff GM; Garcia JM; Mori T; Krupp LE J Phys Chem Lett; 2013 Sep; 4(17):2989-93. PubMed ID: 26706312 [TBL] [Abstract][Full Text] [Related]
35. Nature of Li2O2 oxidation in a Li-O2 battery revealed by operando X-ray diffraction. Ganapathy S; Adams BD; Stenou G; Anastasaki MS; Goubitz K; Miao XF; Nazar LF; Wagemaker M J Am Chem Soc; 2014 Nov; 136(46):16335-44. PubMed ID: 25341076 [TBL] [Abstract][Full Text] [Related]
36. Fluorinated Amide-Based Electrolytes Induce a Sustained Low-Charging Voltage Plateau under Conditions Verifying the Feasibility of Achieving 500 Wh kg Nishioka K; Tanaka M; Goto T; Haas R; Henss A; Azuma S; Saito M; Matsuda S; Yu W; Nishihara H; Fujimoto H; Tobisu M; Mukouyama Y; Nakanishi S ACS Appl Mater Interfaces; 2024 Sep; 16(35):46259-46269. PubMed ID: 39172034 [TBL] [Abstract][Full Text] [Related]
37. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries. Zhou Y; Gu Q; Li Y; Tao L; Tan H; Yin K; Zhou J; Guo S Nano Lett; 2021 Jun; 21(11):4861-4867. PubMed ID: 34044536 [TBL] [Abstract][Full Text] [Related]
38. In-situ characterization of discharge products of lithium-oxygen battery using Flow Electrochemical Atomic Force Microscopy. Cortés HA; Corti HR Ultramicroscopy; 2021 Nov; 230():113369. PubMed ID: 34399101 [TBL] [Abstract][Full Text] [Related]
39. Formation of Li3O4 nano particles in the discharge products of non-aqueous lithium-oxygen batteries leads to lower charge overvoltage. Shi L; Xu A; Zhao TS Phys Chem Chem Phys; 2015 Nov; 17(44):29859-66. PubMed ID: 26486991 [TBL] [Abstract][Full Text] [Related]
40. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. Lim HK; Lim HD; Park KY; Seo DH; Gwon H; Hong J; Goddard WA; Kim H; Kang K J Am Chem Soc; 2013 Jul; 135(26):9733-42. PubMed ID: 23758262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]