These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38587106)
1. Compatibilization of Immiscible Polypropylene/Poly(methyl methacrylate) Blends by Silica Particles with Janus and Random Component-Selective Grafts. Yang X; Wang F; Gao Y; Zhang H; Liu Z; Feng J ACS Appl Mater Interfaces; 2024 Apr; 16(15):19615-19624. PubMed ID: 38587106 [TBL] [Abstract][Full Text] [Related]
2. Reactive Compatibilization: Formation of Double-Grafted Copolymers by In Situ Binary Grafting and Their Compatibilization Effect. Chen D; Wang H; Li Y ACS Appl Mater Interfaces; 2017 Sep; 9(38):33091-33099. PubMed ID: 28882035 [TBL] [Abstract][Full Text] [Related]
3. Reactive Nanoparticles Compatibilized Immiscible Polymer Blends: Synthesis of Reactive SiO Wang H; Fu Z; Zhao X; Li Y; Li J ACS Appl Mater Interfaces; 2017 Apr; 9(16):14358-14370. PubMed ID: 28379686 [TBL] [Abstract][Full Text] [Related]
4. Reactive Janus Particle Compatibilizer with Adjustable Structure and Optimal Interface Location for Compatibilization of Highly Immiscible Polymer Blends. Hu J; Hao X; Ning N; Yu B; Tian M ACS Appl Mater Interfaces; 2023 May; 15(19):23963-23970. PubMed ID: 37158003 [TBL] [Abstract][Full Text] [Related]
5. Compatibilization of Immiscible Polymer Blends Using Wang H; Dong W; Li Y ACS Macro Lett; 2015 Dec; 4(12):1398-1403. PubMed ID: 35614790 [TBL] [Abstract][Full Text] [Related]
6. Reactive Comb Polymer Compatibilized Immiscible PVDF/PLLA Blends: Effects of the Main Chain Structure of Compatibilizer. Yang X; Song J; Wang H; Lin Q; Jin X; Yang X; Li Y Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32121651 [TBL] [Abstract][Full Text] [Related]
7. Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends. Wang H; Fu Z; Dong W; Li Y; Li J J Phys Chem B; 2016 Sep; 120(34):9240-52. PubMed ID: 27505259 [TBL] [Abstract][Full Text] [Related]
8. Compatibilization of Polypropylene/Polyamide 6 Blend Fibers Using Photo-Oxidized Polypropylene. La Mantia FP; Ceraulo M; Mistretta MC; Botta L; Morreale M Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30591623 [TBL] [Abstract][Full Text] [Related]
9. "Patchy" Carbon Nanotubes as Efficient Compatibilizers for Polymer Blends. Gegenhuber T; Krekhova M; Schöbel J; Gröschel AH; Schmalz H ACS Macro Lett; 2016 Mar; 5(3):306-310. PubMed ID: 35614726 [TBL] [Abstract][Full Text] [Related]
10. The impact of Janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions. Bahrami R; Löbling TI; Gröschel AH; Schmalz H; Müller AH; Altstädt V ACS Nano; 2014 Oct; 8(10):10048-56. PubMed ID: 25211536 [TBL] [Abstract][Full Text] [Related]
11. Effect of grafted polymer species on particle monolayer structure at the air-water interface. Mouri E; Okazaki Y; Komune S; Yoshinaga K J Nanosci Nanotechnol; 2011 Mar; 11(3):2486-95. PubMed ID: 21449411 [TBL] [Abstract][Full Text] [Related]
12. Improvement of PLLA Ductility by Blending with PVDF: Localization of Compatibilizers at Interface and Its Glycidyl Methacrylate Content Dependency. Zhang Y; Gu X; Ni C; Li F; Li Y; You J Polymers (Basel); 2020 Aug; 12(8):. PubMed ID: 32824615 [TBL] [Abstract][Full Text] [Related]
13. Interfacial Engineering with Rigid Nanoplatelets in Immiscible Polymer Blends: Interface Strengthening and Interfacial Curvature Controlling. Hu L; Han Y; Rong C; Wang X; Wang H; Li Y ACS Appl Mater Interfaces; 2022 Mar; 14(8):11016-11027. PubMed ID: 35171566 [TBL] [Abstract][Full Text] [Related]
15. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix. Nair N; Wentzel N; Jayaraman A J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity. Zhao X; Wang H; Fu Z; Li Y ACS Appl Mater Interfaces; 2018 Mar; 10(10):8411-8416. PubMed ID: 29488745 [TBL] [Abstract][Full Text] [Related]
17. Bio-Based PBT-DLA Copolyester as an Alternative Compatibilizer of PP/PBT Blends. Ignaczak W; Sobolewski P; El Fray M Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31470683 [TBL] [Abstract][Full Text] [Related]
18. Structure and Properties of PVDF/PA6 Blends Compatibilized by Ionic Liquid-Grafted PA6. Zheng X; Li Y; Tang J; Yu G ACS Omega; 2022 Apr; 7(15):12772-12778. PubMed ID: 35474804 [TBL] [Abstract][Full Text] [Related]
19. Strategies for the synthesis of thermoplastic polymer nanocomposite materials with high inorganic filling fraction. Ojha S; Dang A; Hui CM; Mahoney C; Matyjaszewski K; Bockstaller MR Langmuir; 2013 Jul; 29(28):8989-96. PubMed ID: 23786358 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Singh RP; Pandey JK; Rutot D; Degée P; Dubois P Carbohydr Res; 2003 Aug; 338(17):1759-69. PubMed ID: 12892943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]