BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38587130)

  • 1. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9.
    Wang S; Liu Y; Guo H; Meng Y; Xiong W; Liu R; Yang C
    Biotechnol Bioeng; 2024 Jul; 121(7):2106-2120. PubMed ID: 38587130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsterile production of a polyhydroxyalkanoate copolymer by Halomonas cupida J9.
    Liu Y; Zhao W; Wang S; Huo K; Chen Y; Guo H; Wang S; Liu R; Yang C
    Int J Biol Macromol; 2022 Dec; 223(Pt A):240-251. PubMed ID: 36347367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose.
    Liu H; Chen Y; Wang S; Liu Y; Zhao W; Huo K; Guo H; Xiong W; Wang S; Yang C; Liu R
    Int J Biol Macromol; 2023 Dec; 253(Pt 2):126732. PubMed ID: 37678685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiently unsterile polyhydroxyalkanoate production from lignocellulose by using alkali-halophilic Halomonas alkalicola M2.
    Luo CB; Li HC; Li DQ; Nawaz H; You TT; Xu F
    Bioresour Technol; 2022 May; 351():126919. PubMed ID: 35240276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440.
    Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q
    BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of polyhydroxyalkanoate production in Halomonas sp. YLGW01 using mixed volatile fatty acids: a study on mixture analysis and fed-batch strategy.
    Park Y; Jeon JM; Park JK; Yang YH; Choi SS; Yoon JJ
    Microb Cell Fact; 2023 Sep; 22(1):171. PubMed ID: 37661274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlocking growth potential in Halomonas bluephagenesis for enhanced PHA production with sulfate ions.
    Yao F; Yuan K; Zhou W; Tang W; Tang T; Yang X; Liu H; Li F; Xu Q; Peng C
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38632039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fed-Batch Strategies for Production of PHA Using a Native Isolate of Halomonas venusta KT832796 Strain.
    Stanley A; Punil Kumar HN; Mutturi S; Vijayendra SVN
    Appl Biochem Biotechnol; 2018 Mar; 184(3):935-952. PubMed ID: 28918584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and economical production of polyhydroxyalkanoate from sustainable rubber wood hydrolysate and xylose as co-substrate by mixed microbial cultures.
    Li J; Li D; Su Y; Yan X; Wang F; Yu L; Ma X
    Bioresour Technol; 2022 Jul; 355():127238. PubMed ID: 35489568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Halomonas and Pathway Engineering for Bioplastics Production.
    Xiao-Ran J; Jin Y; Xiangbin C; Guo-Qiang C
    Methods Enzymol; 2018; 608():309-328. PubMed ID: 30173767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Halomonas bluephagenesis capable of high cell density growth for efficient PHA production.
    Ren Y; Ling C; Hajnal I; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2018 May; 102(10):4499-4510. PubMed ID: 29623388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Halomonas TD01 as a host for open production of chemicals.
    Fu XZ; Tan D; Aibaidula G; Wu Q; Chen JC; Chen GQ
    Metab Eng; 2014 May; 23():78-91. PubMed ID: 24566041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of functional polyhydroxyalkanoates by engineered Halomonas bluephagenesis.
    Yu LP; Yan X; Zhang X; Chen XB; Wu Q; Jiang XR; Chen GQ
    Metab Eng; 2020 May; 59():119-130. PubMed ID: 32119929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli.
    Jarmander J; Belotserkovsky J; Sjöberg G; Guevara-Martínez M; Pérez-Zabaleta M; Quillaguamán J; Larsson G
    Microb Cell Fact; 2015 Apr; 14():51. PubMed ID: 25889969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The composition analysis and preliminary cultivation optimization of a PHA-producing microbial consortium with xylose as a sole carbon source.
    Huang L; Liu C; Liu Y; Jia X
    Waste Manag; 2016 Jun; 52():77-85. PubMed ID: 27021696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot Scale-up of Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Production by Halomonas bluephagenesis via Cell Growth Adapted Optimization Process.
    Ye J; Huang W; Wang D; Chen F; Yin J; Li T; Zhang H; Chen GQ
    Biotechnol J; 2018 May; 13(5):e1800074. PubMed ID: 29578651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering NADH/NAD
    Ling C; Qiao GQ; Shuai BW; Olavarria K; Yin J; Xiang RJ; Song KN; Shen YH; Guo Y; Chen GQ
    Metab Eng; 2018 Sep; 49():275-286. PubMed ID: 30219528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient polyhydroxyalkanoate production from lignin using genetically engineered Halomonas sp. Y3.
    Li YQ; Wang MJ; Luo CB
    Bioresour Technol; 2023 Feb; 370():128526. PubMed ID: 36572161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction.
    Zheng Y; Chen JC; Ma YM; Chen GQ
    Metab Eng; 2020 Mar; 58():82-93. PubMed ID: 31302223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.