These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38587202)

  • 1. FEVER: an interactive web-based resource for evolutionary transcriptomics across fishes.
    Montfort J; Hervas-Sotomayor F; Le Cam A; Murat F
    Nucleic Acids Res; 2024 Jul; 52(W1):W65-W69. PubMed ID: 38587202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.
    Hughes LC; Ortí G; Huang Y; Sun Y; Baldwin CC; Thompson AW; Arcila D; Betancur-R R; Li C; Becker L; Bellora N; Zhao X; Li X; Wang M; Fang C; Xie B; Zhou Z; Huang H; Chen S; Venkatesh B; Shi Q
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6249-6254. PubMed ID: 29760103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca.
    Liu F; Li Y; Yu H; Zhang L; Hu J; Bao Z; Wang S
    Nucleic Acids Res; 2021 Jan; 49(D1):D988-D997. PubMed ID: 33219670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.
    Pasquier J; Cabau C; Nguyen T; Jouanno E; Severac D; Braasch I; Journot L; Pontarotti P; Klopp C; Postlethwait JH; Guiguen Y; Bobe J
    BMC Genomics; 2016 May; 17():368. PubMed ID: 27189481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes.
    Gu L; Xia C
    BMC Evol Biol; 2019 Jan; 19(1):9. PubMed ID: 30621595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin gene evolution in early teleost fishes.
    Chen JN; Samadi S; Chen WJ
    PLoS One; 2018; 13(11):e0206918. PubMed ID: 30395593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic Access to the Diversity of Fishes.
    Nolte AW
    Methods Mol Biol; 2020; 2090():397-411. PubMed ID: 31975176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo.
    Braasch I; Peterson SM; Desvignes T; McCluskey BM; Batzel P; Postlethwait JH
    J Exp Zool B Mol Dev Evol; 2015 Jun; 324(4):316-41. PubMed ID: 25111899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.
    Amores A; Catchen J; Ferrara A; Fontenot Q; Postlethwait JH
    Genetics; 2011 Aug; 188(4):799-808. PubMed ID: 21828280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing less derived nature of cartilaginous fish genomes with their evolutionary time scale inferred with nuclear genes.
    Renz AJ; Meyer A; Kuraku S
    PLoS One; 2013; 8(6):e66400. PubMed ID: 23825540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-T1K (Transcriptomes of 1,000 Fishes) Project: large-scale transcriptome data for fish evolution studies.
    Sun Y; Huang Y; Li X; Baldwin CC; Zhou Z; Yan Z; Crandall KA; Zhang Y; Zhao X; Wang M; Wong A; Fang C; Zhang X; Huang H; Lopez JV; Kilfoyle K; Zhang Y; Ortí G; Venkatesh B; Shi Q
    Gigascience; 2016; 5():18. PubMed ID: 27144000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wanda: a database of duplicated fish genes.
    Van de Peer Y; Taylor JS; Joseph J; Meyer A
    Nucleic Acids Res; 2002 Jan; 30(1):109-12. PubMed ID: 11752268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative and evolutionary genomics of globin genes in fish.
    Negrisolo E; Bargelloni L; Patarnello T; Ozouf-Costaz C; Pisano E; di Prisco G; Verde C
    Methods Enzymol; 2008; 436():511-38. PubMed ID: 18237652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.
    Lappin FM; Shaw RL; Macqueen DJ
    Mar Genomics; 2016 Dec; 30():15-26. PubMed ID: 27346185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
    Singh PP; Isambert H
    Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species.
    Sarropoulou E; Fernandes JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Mar; 6(1):92-102. PubMed ID: 20961822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.