These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. High-entropy materials for energy-related applications. Fu M; Ma X; Zhao K; Li X; Su D iScience; 2021 Mar; 24(3):102177. PubMed ID: 33718829 [TBL] [Abstract][Full Text] [Related]
3. High-entropy alloy nanomaterials for electrocatalysis. Cui M; Zhang Y; Xu B; Xu F; Chen J; Zhang S; Chen C; Luo Z Chem Commun (Camb); 2024 Oct; 60(87):12615-12632. PubMed ID: 39377768 [TBL] [Abstract][Full Text] [Related]
4. Review of High Entropy Alloys Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Huo X; Yu H; Xing B; Zuo X; Zhang N Chem Rec; 2022 Dec; 22(12):e202200175. PubMed ID: 36108141 [TBL] [Abstract][Full Text] [Related]
5. High-entropy alloys in electrocatalysis: from fundamentals to applications. Ren JT; Chen L; Wang HY; Yuan ZY Chem Soc Rev; 2023 Nov; 52(23):8319-8373. PubMed ID: 37920962 [TBL] [Abstract][Full Text] [Related]
6. Future prospects of high-entropy alloys as next-generation industrial electrode materials. Bolar S; Ito Y; Fujita T Chem Sci; 2024 Jun; 15(23):8664-8722. PubMed ID: 38873068 [TBL] [Abstract][Full Text] [Related]
7. Nanomaterials: paving the way for the hydrogen energy frontier. Shaker LM; Al-Amiery AA; Al-Azzawi WK Discov Nano; 2024 Jan; 19(1):3. PubMed ID: 38169021 [TBL] [Abstract][Full Text] [Related]
8. Nanostructured High Entropy Alloys as Structural and Functional Materials. Zhu W; Gao X; Yao Y; Hu S; Li Z; Teng Y; Wang H; Gong H; Chen Z; Yang Y ACS Nano; 2024 May; 18(20):12672-12706. PubMed ID: 38717959 [TBL] [Abstract][Full Text] [Related]
9. High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas: Focus Review. Sen S; Palabathuni M; Ryan KM; Singh S ACS Energy Lett; 2024 Aug; 9(8):3694-3718. PubMed ID: 39144813 [TBL] [Abstract][Full Text] [Related]
10. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts. Cui X; Wu M; Liu X; He B; Zhu Y; Jiang Y; Yang Y Chem Soc Rev; 2024 Feb; 53(3):1447-1494. PubMed ID: 38164808 [TBL] [Abstract][Full Text] [Related]
11. Graphene materials in pollution trace detection and environmental improvement. Singh R; Samuel MS; Ravikumar M; Ethiraj S; Kumar M Environ Res; 2024 Feb; 243():117830. PubMed ID: 38056611 [TBL] [Abstract][Full Text] [Related]
12. Muti-dimensional High-entropy Materials for Energy Conversion Reactions: Current State and Future Trends. Dong Y; Zhang L; Wu T; Zhan Y; Zhou B; Wei F; Zhang D; Long X ChemSusChem; 2024 Jul; ():e202401261. PubMed ID: 39010254 [TBL] [Abstract][Full Text] [Related]
13. A review of vertical graphene and its energy storage system applications. Huang C; Mu Y; Chu Y; Gu H; Liao Z; Han M; Zeng L J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38038203 [TBL] [Abstract][Full Text] [Related]
14. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. Kumar K; Kumar R; Kaushal S; Thakur N; Umar A; Akbar S; Ibrahim AA; Baskoutas S Chemosphere; 2023 Dec; 345():140419. PubMed ID: 37848104 [TBL] [Abstract][Full Text] [Related]
15. High-Entropy Materials for Prospective Biomedical Applications: Challenges and Opportunities. Chang L; Jing H; Liu C; Qiu C; Ling X Adv Sci (Weinh); 2024 Nov; 11(42):e2406521. PubMed ID: 39248345 [TBL] [Abstract][Full Text] [Related]
16. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
17. Recent Advances on Nitrogen-Doped Porous Carbons Towards Electrochemical Supercapacitor Applications. Komal Zafar H; Zainab S; Masood M; Sohail M; Shoaib Ahmad Shah S; Karim MR; O'Mullane A; Ostrikov KK; Will G; Wahab MA Chem Rec; 2024 Jan; 24(1):e202300161. PubMed ID: 37582638 [TBL] [Abstract][Full Text] [Related]
18. MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. Gautam S; Rialach S; Paul S; Goyal N RSC Adv; 2024 Apr; 14(20):14311-14339. PubMed ID: 38690108 [TBL] [Abstract][Full Text] [Related]
19. Metal-Organic Framework Materials for Electrochemical Supercapacitors. Cao Z; Momen R; Tao S; Xiong D; Song Z; Xiao X; Deng W; Hou H; Yasar S; Altin S; Bulut F; Zou G; Ji X Nanomicro Lett; 2022 Sep; 14(1):181. PubMed ID: 36050520 [TBL] [Abstract][Full Text] [Related]
20. From lab to field: Prussian blue frameworks as sustainable cathode materials. Anil Kumar Y; Sana SS; Ramachandran T; Assiri MA; Srinivasa Rao S; Kim SC Dalton Trans; 2024 Jul; 53(26):10770-10804. PubMed ID: 38859722 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]