These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 38587649)
41. Effects of low rumen-degradable protein or abomasal fructan infusion on diet digestibility and urinary nitrogen excretion in lactating dairy cows. Gressley TF; Armentano LE J Dairy Sci; 2007 Mar; 90(3):1340-53. PubMed ID: 17297109 [TBL] [Abstract][Full Text] [Related]
42. Determination of protoberberine alkaloids in Rhizoma Coptidis by ERETIC ¹H NMR method. Ding PL; Chen LQ; Lu Y; Li YG J Pharm Biomed Anal; 2012 Feb; 60():44-50. PubMed ID: 22119162 [TBL] [Abstract][Full Text] [Related]
43. Characterization of UreG, identification of a UreD-UreF-UreG complex, and evidence suggesting that a nucleotide-binding site in UreG is required for in vivo metallocenter assembly of Klebsiella aerogenes urease. Moncrief MB; Hausinger RP J Bacteriol; 1997 Jul; 179(13):4081-6. PubMed ID: 9209019 [TBL] [Abstract][Full Text] [Related]
44. Inhibitory activities of the alkaloids from Coptidis Rhizoma against aldose reductase. Jung HA; Yoon NY; Bae HJ; Min BS; Choi JS Arch Pharm Res; 2008 Nov; 31(11):1405-12. PubMed ID: 19023536 [TBL] [Abstract][Full Text] [Related]
45. The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreG, an intrinsically disordered GTPase. D'Urzo A; Santambrogio C; Grandori R; Ciurli S; Zambelli B J Biol Inorg Chem; 2014 Dec; 19(8):1341-54. PubMed ID: 25200810 [TBL] [Abstract][Full Text] [Related]
46. Review: Ruminal microbiome and microbial metabolome: effects of diet and ruminant host. Newbold CJ; Ramos-Morales E Animal; 2020 Mar; 14(S1):s78-s86. PubMed ID: 32024572 [TBL] [Abstract][Full Text] [Related]
47. A novel ammoniation treatment of barley as a strategy to optimize rumen pH, feed degradability and microbial protein synthesis in sheep. Belanche A; Martín-García I; Jiménez E; Jonsson NN; Yañez-Ruiz DR J Sci Food Agric; 2021 Oct; 101(13):5541-5549. PubMed ID: 33709464 [TBL] [Abstract][Full Text] [Related]
48. Analysis of a soluble (UreD:UreF:UreG)2 accessory protein complex and its interactions with Klebsiella aerogenes urease by mass spectrometry. Farrugia MA; Han L; Zhong Y; Boer JL; Ruotolo BT; Hausinger RP J Am Soc Mass Spectrom; 2013 Sep; 24(9):1328-37. PubMed ID: 23797863 [TBL] [Abstract][Full Text] [Related]
49. Reducing Ruminal Ammonia Production With Improvement in Feed Utilization Efficiency and Performance of Murrah Buffalo ( Chanu YM; Paul SS; Dey A; Dahiya SS Front Vet Sci; 2020; 7():464. PubMed ID: 33015136 [TBL] [Abstract][Full Text] [Related]
50. Rumen bacterial urease requirement for nickel. Spears JW; Smith CJ; Hatfield EE J Dairy Sci; 1977 Jul; 60(7):1073-6. PubMed ID: 881474 [TBL] [Abstract][Full Text] [Related]
51. Biochemical studies on Mycobacterium tuberculosis UreG and comparative modeling reveal structural and functional conservation among the bacterial UreG family. Zambelli B; Musiani F; Savini M; Tucker P; Ciurli S Biochemistry; 2007 Mar; 46(11):3171-82. PubMed ID: 17309280 [TBL] [Abstract][Full Text] [Related]
52. Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition. Benoit SL; McMurry JL; Hill SA; Maier RJ Biochim Biophys Acta; 2012 Oct; 1820(10):1519-25. PubMed ID: 22698670 [TBL] [Abstract][Full Text] [Related]
53. Reducing microbial ureolytic activity in the rumen by immunization against urease therein. Zhao S; Wang J; Zheng N; Bu D; Sun P; Yu Z BMC Vet Res; 2015 Apr; 11():94. PubMed ID: 25889568 [TBL] [Abstract][Full Text] [Related]
54. Production of animal protein from nonprotein nitrogen chemicals. Chalupa W Adv Exp Med Biol; 1978; 105():473-95. PubMed ID: 727024 [TBL] [Abstract][Full Text] [Related]
55. [Studies on the effect of phosphoric phenyl ester diamide as inhibitor of the rumen urease of dairy cows. 1. Influence on urea hydrolysis, ammonia release and fermentation in the rumen]. Voigt J; Piatkowski B; Bock J Arch Tierernahr; 1980 Dec; 30(10-12):811-23. PubMed ID: 7283728 [TBL] [Abstract][Full Text] [Related]
56. Plant-based strategies towards minimising 'livestock's long shadow'. Kingston-Smith AH; Edwards JE; Huws SA; Kim EJ; Abberton M Proc Nutr Soc; 2010 Nov; 69(4):613-20. PubMed ID: 20682089 [TBL] [Abstract][Full Text] [Related]
57. [Effects of biochar combined with nitrification/urease inhibitors on soil active nitrogen emissions from subtropical paddy soils]. Huang JJ; He LL; Liu YX; Lyu HH; Wang YY; Chen ZM; Chen JY; Yang SM Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):1027-1036. PubMed ID: 35543056 [TBL] [Abstract][Full Text] [Related]
58. Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease. Miraula M; Ciurli S; Zambelli B J Biol Inorg Chem; 2015 Jun; 20(4):739-55. PubMed ID: 25846143 [TBL] [Abstract][Full Text] [Related]
59. Zn2+-linked dimerization of UreG from Helicobacter pylori, a chaperone involved in nickel trafficking and urease activation. Zambelli B; Turano P; Musiani F; Neyroz P; Ciurli S Proteins; 2009 Jan; 74(1):222-39. PubMed ID: 18767150 [TBL] [Abstract][Full Text] [Related]
60. The soybean Eu3 gene encodes an Ni-binding protein necessary for urease activity. Freyermuth SK; Bacanamwo M; Polacco JC Plant J; 2000 Jan; 21(1):53-60. PubMed ID: 10652150 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]