These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Investigating the optical properties and electronic structure of gallium phosphide nanotubes doped with arsenic via implementing first-principles calculations. Nawaf S; Rzaij JM; Al-Jobory AA; Motlak M J Mol Model; 2024 Jul; 30(8):243. PubMed ID: 38955842 [TBL] [Abstract][Full Text] [Related]
4. DFT study of structural, elastic, electronic and dielectric properties of blue phosphorus nanotubes. Hao J; Wang Z; Jin Q Sci Rep; 2019 Aug; 9(1):11264. PubMed ID: 31375733 [TBL] [Abstract][Full Text] [Related]
5. Janus 2D titanium nitride halide TiNX Shi X; Yin H; Jiang S; Chen W; Zheng GP; Ren F; Wang B; Zhao G; Liu B Phys Chem Chem Phys; 2021 Feb; 23(5):3637-3645. PubMed ID: 33524094 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous flexoelectricity and band engineering in MS Dong J; Hu H; Li H; Ouyang G Phys Chem Chem Phys; 2021 Sep; 23(36):20574-20582. PubMed ID: 34505592 [TBL] [Abstract][Full Text] [Related]
9. Spin-Orbit Coupling and Spin-Polarized Electronic Structures of Janus Vanadium-Dichalcogenide Monolayers: First-Principles Calculations. Lv MH; Li CM; Sun WF Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159727 [TBL] [Abstract][Full Text] [Related]
10. On the electronic and geometric structures of armchair GeC nanotubes: a hybrid density functional study. Rathi SJ; Ray AK Nanotechnology; 2008 Aug; 19(33):335706. PubMed ID: 21730632 [TBL] [Abstract][Full Text] [Related]
11. Tuning Excitonic Properties of Monochalcogenides via Design of Janus Structures. B P Querne M; C Dias A; Janotti A; Da Silva JLF; Lima MP J Phys Chem C Nanomater Interfaces; 2024 Jul; 128(29):12164-12177. PubMed ID: 39081561 [TBL] [Abstract][Full Text] [Related]
12. Energy gaps in "metallic" single-walled carbon nanotubes. Ouyang M; Huang JL; Cheung CL; Lieber CM Science; 2001 Apr; 292(5517):702-5. PubMed ID: 11326093 [TBL] [Abstract][Full Text] [Related]
13. Geometry, electronic structures and optical properties of phosphorus nanotubes. Hu T; Hashmi A; Hong J Nanotechnology; 2015 Oct; 26(41):415702. PubMed ID: 26391069 [TBL] [Abstract][Full Text] [Related]
15. First-principles study of CN carbon nitride nanotubes. Chai G; Lin C; Zhang M; Wang J; Cheng W Nanotechnology; 2010 May; 21(19):195702. PubMed ID: 20400819 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of lanthanide double-decker phthalocyanines on single-walled carbon nanotubes: structural changes and electronic properties as studied by density functional theory. Bolívar-Pineda LM; Mendoza-Domínguez CU; Basiuk VA J Mol Model; 2023 Apr; 29(5):158. PubMed ID: 37099146 [TBL] [Abstract][Full Text] [Related]
18. A hybrid density functional study of zigzag SiC nanotubes. Alam KM; Ray AK Nanotechnology; 2007 Dec; 18(49):495706. PubMed ID: 20442487 [TBL] [Abstract][Full Text] [Related]
19. Flexoelectricity and Charge Separation in Carbon Nanotubes. Artyukhov VI; Gupta S; Kutana A; Yakobson BI Nano Lett; 2020 May; 20(5):3240-3246. PubMed ID: 32155086 [TBL] [Abstract][Full Text] [Related]
20. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides. Wang J; Shu H; Zhao T; Liang P; Wang N; Cao D; Chen X Phys Chem Chem Phys; 2018 Jul; 20(27):18571-18578. PubMed ID: 29953140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]