These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 38588030)
1. The CELL NUMBER REGULATOR FW2.2 protein regulates cell-to-cell communication in tomato by modulating callose deposition at plasmodesmata. Beauchet A; Bollier N; Grison M; Rofidal V; Gévaudant F; Bayer E; Gonzalez N; Chevalier C Plant Physiol; 2024 Oct; 196(2):883-901. PubMed ID: 38588030 [TBL] [Abstract][Full Text] [Related]
2. Tomato FW2.2/CNR might regulate fruit size via plasmodesmata callose deposition. Tran TM; Billakurthi K Plant Physiol; 2024 Oct; 196(2):679-680. PubMed ID: 38688006 [No Abstract] [Full Text] [Related]
3. In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato. Beauchet A; Gévaudant F; Gonzalez N; Chevalier C J Exp Bot; 2021 Jul; 72(15):5300-5311. PubMed ID: 33974684 [TBL] [Abstract][Full Text] [Related]
4. Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Liu J; Cong B; Tanksley SD Plant Physiol; 2003 May; 132(1):292-9. PubMed ID: 12746534 [TBL] [Abstract][Full Text] [Related]
5. FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Cong B; Tanksley SD Plant Mol Biol; 2006 Dec; 62(6):867-80. PubMed ID: 16941207 [TBL] [Abstract][Full Text] [Related]
6. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Monforte AJ; Diaz A; Caño-Delgado A; van der Knaap E J Exp Bot; 2014 Aug; 65(16):4625-37. PubMed ID: 24520021 [TBL] [Abstract][Full Text] [Related]
7. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Frary A; Nesbitt TC; Grandillo S; Knaap E; Cong B; Liu J; Meller J; Elber R; Alpert KB; Tanksley SD Science; 2000 Jul; 289(5476):85-8. PubMed ID: 10884229 [TBL] [Abstract][Full Text] [Related]
8. β-1,3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition. Pei Y; Xue Q; Zhang Z; Shu P; Deng H; Bouzayen M; Hong Y; Liu M Plant Physiol; 2023 Aug; 192(4):2785-2802. PubMed ID: 37141312 [TBL] [Abstract][Full Text] [Related]
9. Cell number counts--the fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Guo M; Simmons CR Plant Sci; 2011 Jul; 181(1):1-7. PubMed ID: 21600391 [TBL] [Abstract][Full Text] [Related]
10. PbPDCB16-mediated callose deposition affects the plasmodesmata blockage and reduces lignification in pear fruit. Li W; Yuan K; Ren M; Xie Z; Qi K; Gong X; Wang Q; Zhang S; Tao S Plant Sci; 2023 Dec; 337():111876. PubMed ID: 37748584 [TBL] [Abstract][Full Text] [Related]
11. fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Nesbitt TC; Tanksley SD Plant Physiol; 2001 Oct; 127(2):575-83. PubMed ID: 11598231 [TBL] [Abstract][Full Text] [Related]
12. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development. de Jong M; Wolters-Arts M; Schimmel BC; Stultiens CL; de Groot PF; Powers SJ; Tikunov YM; Bovy AG; Mariani C; Vriezen WH; Rieu I J Exp Bot; 2015 Jun; 66(11):3405-16. PubMed ID: 25883382 [TBL] [Abstract][Full Text] [Related]
13. The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. Baldet P; Hernould M; Laporte F; Mounet F; Just D; Mouras A; Chevalier C; Rothan C J Exp Bot; 2006; 57(4):961-70. PubMed ID: 16488916 [TBL] [Abstract][Full Text] [Related]
14. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Cong B; Liu J; Tanksley SD Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13606-11. PubMed ID: 12370431 [TBL] [Abstract][Full Text] [Related]
15. α1-COP modulates plasmodesmata function through sphingolipid enzyme regulation. Iswanto ABB; Vu MH; Shon JC; Kumar R; Wu S; Kang H; Kim DR; Son GH; Kim WY; Kwak YS; Liu KH; Kim SH; Kim JY J Integr Plant Biol; 2024 Aug; 66(8):1639-1657. PubMed ID: 38888228 [TBL] [Abstract][Full Text] [Related]
16. Evaluating auxin distribution in tomato (Solanum lycopersicum) through an analysis of the PIN and AUX/LAX gene families. Pattison RJ; Catalá C Plant J; 2012 May; 70(4):585-98. PubMed ID: 22211518 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a novel mutant allele of GSL8 reveals its key roles in cytokinesis and symplastic trafficking in Arabidopsis. Saatian B; Austin RS; Tian G; Chen C; Nguyen V; Kohalmi SE; Geelen D; Cui Y BMC Plant Biol; 2018 Nov; 18(1):295. PubMed ID: 30466394 [TBL] [Abstract][Full Text] [Related]
18. Regulation and Function of Defense-Related Callose Deposition in Plants. Wang Y; Li X; Fan B; Zhu C; Chen Z Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673633 [TBL] [Abstract][Full Text] [Related]
19. A multilevel analysis of fruit growth of two tomato cultivars in response to fruit temperature. Okello RC; de Visser PH; Heuvelink E; Lammers M; de Maagd RA; Struik PC; Marcelis LF Physiol Plant; 2015 Mar; 153(3):403-18. PubMed ID: 24957883 [TBL] [Abstract][Full Text] [Related]
20. Genetic analysis of reproductive development in tomato. Lozano R; Giménez E; Cara B; Capel J; Angosto T Int J Dev Biol; 2009; 53(8-10):1635-48. PubMed ID: 19876848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]