These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38588536)

  • 61. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Preparation and atomic force microscopy (AFM) characterization of DNA scaffolds as a template for protein immobilization.
    Lee HU; Kim H; Lee YC; Lee J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8699-702. PubMed ID: 25958587
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Creation of ordered 3D tubes out of DNA origami lattices.
    Parikka JM; Järvinen H; Sokołowska K; Ruokolainen V; Markešević N; Natarajan AK; Vihinen-Ranta M; Kuzyk A; Tapio K; Toppari JJ
    Nanoscale; 2023 May; 15(17):7772-7780. PubMed ID: 37057647
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Barcode extension for analysis and reconstruction of structures.
    Myhrvold C; Baym M; Hanikel N; Ong LL; Gootenberg JS; Yin P
    Nat Commun; 2017 Mar; 8():14698. PubMed ID: 28287117
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DNA-Enabled Chiral Gold Nanoparticle-Chromophore Hybrid Structure with Resonant Plasmon-Exciton Coupling Gives Unusual and Strong Circular Dichroism.
    Lan X; Zhou X; McCarthy LA; Govorov AO; Liu Y; Link S
    J Am Chem Soc; 2019 Dec; 141(49):19336-19341. PubMed ID: 31724853
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Construction of a Polyhedral DNA 12-Arm Junction for Self-Assembly of Wireframe DNA Lattices.
    Manuguerra I; Grossi G; Thomsen RP; Lyngsø J; Pedersen JS; Kjems J; Andersen ES; Gothelf KV
    ACS Nano; 2017 Sep; 11(9):9041-9047. PubMed ID: 28806061
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes.
    Zuccheri G; Brucale M; Samorì B
    Small; 2005 Jun; 1(6):590-2. PubMed ID: 17193491
    [No Abstract]   [Full Text] [Related]  

  • 69. Multidimensional Honeycomb-like DNA Nanostructures Made of C-Motifs.
    Tandon A; Kim B; Mariyappan K; Kokkiligadda S; Jeon S; Jeong JH; Park SH
    ACS Biomater Sci Eng; 2023 Feb; 9(2):608-616. PubMed ID: 36595627
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Meta-DNA structures.
    Yao G; Zhang F; Wang F; Peng T; Liu H; Poppleton E; Šulc P; Jiang S; Liu L; Gong C; Jing X; Liu X; Wang L; Liu Y; Fan C; Yan H
    Nat Chem; 2020 Nov; 12(11):1067-1075. PubMed ID: 32895523
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Recent developments in the chiroptical properties of chiral plasmonic gold nanostructures: bioanalytical applications.
    John N; Mariamma AT
    Mikrochim Acta; 2021 Nov; 188(12):424. PubMed ID: 34811580
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Self-assembly of a nanoscale DNA box with a controllable lid.
    Andersen ES; Dong M; Nielsen MM; Jahn K; Subramani R; Mamdouh W; Golas MM; Sander B; Stark H; Oliveira CL; Pedersen JS; Birkedal V; Besenbacher F; Gothelf KV; Kjems J
    Nature; 2009 May; 459(7243):73-6. PubMed ID: 19424153
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tomography of DNA tiles influences the kinetics of surface-mediated DNA self-assembly.
    Zhang C; Paluzzi VE; Mao C
    Biophys J; 2022 Dec; 121(24):4909-4914. PubMed ID: 35923101
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Molecular self-assembly into one-dimensional nanostructures.
    Palmer LC; Stupp SI
    Acc Chem Res; 2008 Dec; 41(12):1674-84. PubMed ID: 18754628
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Quantitative Measurement of Spatial Effects of DNA Origami on Molecular Binding Reactions Detected using Atomic Force Microscopy.
    Zhang P; Wang F; Liu W; Mao X; Hao C; Zhang Y; Fan C; Hu J; Wang L; Li B
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21973-21981. PubMed ID: 31117423
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames.
    Willaert RG; Kasas S
    Methods Mol Biol; 2022; 2516():157-167. PubMed ID: 35922627
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Modular self-assembly of DNA lattices with tunable periodicity.
    Liu Y; Yan H
    Small; 2005 Mar; 1(3):327-30. PubMed ID: 17193452
    [No Abstract]   [Full Text] [Related]  

  • 78. Programmed two-dimensional self-assembly of multiple DNA origami jigsaw pieces.
    Rajendran A; Endo M; Katsuda Y; Hidaka K; Sugiyama H
    ACS Nano; 2011 Jan; 5(1):665-71. PubMed ID: 21188996
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Aptamers as Functional Modules for DNA Nanostructures.
    Shiu SC; Kinghorn AB; Guo W; Slaughter LS; Ji D; Mo X; Wang L; Tran NC; Kwok CK; Shum AHC; Tse ECM; Tanner JA
    Methods Mol Biol; 2023; 2639():301-337. PubMed ID: 37166724
    [TBL] [Abstract][Full Text] [Related]  

  • 80. From nonfinite to finite 1D arrays of origami tiles.
    Wu TC; Rahman M; Norton ML
    Acc Chem Res; 2014 Jun; 47(6):1750-8. PubMed ID: 24803094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.