These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 38588573)
1. EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data. Li S; Li Y; Sun Y; Li Y; Chen X; Tang S; Chen S Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38588573 [TBL] [Abstract][Full Text] [Related]
2. ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data. Chen S; Wang R; Long W; Jiang R Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610708 [TBL] [Abstract][Full Text] [Related]
3. Accurate Annotation for Differentiating and Imbalanced Cell Types in Single-Cell Chromatin Accessibility Data. Jia Y; Li S; Jiang R; Chen S IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):461-471. PubMed ID: 38442065 [TBL] [Abstract][Full Text] [Related]
4. Building and analyzing metacells in single-cell genomics data. Bilous M; Hérault L; Gabriel AA; Teleman M; Gfeller D Mol Syst Biol; 2024 Jul; 20(7):744-766. PubMed ID: 38811801 [TBL] [Abstract][Full Text] [Related]
6. scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data. Yu W; Uzun Y; Zhu Q; Chen C; Tan K Genome Biol; 2020 Apr; 21(1):94. PubMed ID: 32312293 [TBL] [Abstract][Full Text] [Related]
7. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data. Zhai Y; Chen L; Deng M Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389 [TBL] [Abstract][Full Text] [Related]
8. RA3 is a reference-guided approach for epigenetic characterization of single cells. Chen S; Yan G; Zhang W; Li J; Jiang R; Lin Z Nat Commun; 2021 Apr; 12(1):2177. PubMed ID: 33846355 [TBL] [Abstract][Full Text] [Related]
9. scAMACE: model-based approach to the joint analysis of single-cell data on chromatin accessibility, gene expression and methylation. Wangwu J; Sun Z; Lin Z Bioinformatics; 2021 Nov; 37(21):3874-3880. PubMed ID: 34086847 [TBL] [Abstract][Full Text] [Related]
10. CloudATAC: a cloud-based framework for ATAC-Seq data analysis. Veerappa AM; Rowley MJ; Maggio A; Beaudry L; Hawkins D; Kim A; Sethi S; Sorgen PL; Guda C Brief Bioinform; 2024 Jul; 25(Supplement_1):. PubMed ID: 39041910 [TBL] [Abstract][Full Text] [Related]
11. Benchmarking atlas-level data integration in single-cell genomics. Luecken MD; Büttner M; Chaichoompu K; Danese A; Interlandi M; Mueller MF; Strobl DC; Zappia L; Dugas M; Colomé-Tatché M; Theis FJ Nat Methods; 2022 Jan; 19(1):41-50. PubMed ID: 34949812 [TBL] [Abstract][Full Text] [Related]
12. simCAS: an embedding-based method for simulating single-cell chromatin accessibility sequencing data. Li C; Chen X; Chen S; Jiang R; Zhang X Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37494428 [TBL] [Abstract][Full Text] [Related]
13. scCASE: accurate and interpretable enhancement for single-cell chromatin accessibility sequencing data. Tang S; Cui X; Wang R; Li S; Li S; Huang X; Chen S Nat Commun; 2024 Feb; 15(1):1629. PubMed ID: 38388573 [TBL] [Abstract][Full Text] [Related]
14. Efficient cytometry analysis with FlowSOM in Python boosts interoperability with other single-cell tools. Couckuyt A; Rombaut B; Saeys Y; Van Gassen S Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38632080 [TBL] [Abstract][Full Text] [Related]
15. SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data. Ren X; Zheng L; Zhang Z Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):201-210. PubMed ID: 31202000 [TBL] [Abstract][Full Text] [Related]
17. Single-cell chromatin state analysis with Signac. Stuart T; Srivastava A; Madad S; Lareau CA; Satija R Nat Methods; 2021 Nov; 18(11):1333-1341. PubMed ID: 34725479 [TBL] [Abstract][Full Text] [Related]
18. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Lin P; Troup M; Ho JW Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406 [TBL] [Abstract][Full Text] [Related]
19. Robust and efficient single-cell Hi-C clustering with approximate k-nearest neighbor graphs. Wolff J; Backofen R; Grüning B Bioinformatics; 2021 Nov; 37(22):4006-4013. PubMed ID: 34021764 [TBL] [Abstract][Full Text] [Related]
20. BANMF-S: a blockwise accelerated non-negative matrix factorization framework with structural network constraints for single cell imputation. Zhao J; Ching WK; Wong CW; Cheng X Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39242194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]