BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 38588573)

  • 21. scEpiTools: a database to comprehensively interrogate analytic tools for single-cell epigenomic data.
    Gao Z; Chen X; Li Z; Cui X; Jiang Q; Li K; Chen S; Jiang R
    J Genet Genomics; 2024 Apr; 51(4):462-465. PubMed ID: 37769837
    [No Abstract]   [Full Text] [Related]  

  • 22. Dictionary learning for integrative, multimodal and scalable single-cell analysis.
    Hao Y; Stuart T; Kowalski MH; Choudhary S; Hoffman P; Hartman A; Srivastava A; Molla G; Madad S; Fernandez-Granda C; Satija R
    Nat Biotechnol; 2024 Feb; 42(2):293-304. PubMed ID: 37231261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data.
    Persad S; Choo ZN; Dien C; Sohail N; Masilionis I; Chaligné R; Nawy T; Brown CC; Sharma R; Pe'er I; Setty M; Pe'er D
    Nat Biotechnol; 2023 Dec; 41(12):1746-1757. PubMed ID: 36973557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ASTER: accurately estimating the number of cell types in single-cell chromatin accessibility data.
    Chen S; Wang R; Long W; Jiang R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scarf enables a highly memory-efficient analysis of large-scale single-cell genomics data.
    Dhapola P; Rodhe J; Olofzon R; Bonald T; Erlandsson E; Soneji S; Karlsson G
    Nat Commun; 2022 Aug; 13(1):4616. PubMed ID: 35941103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metacell-2: a divide-and-conquer metacell algorithm for scalable scRNA-seq analysis.
    Ben-Kiki O; Bercovich A; Lifshitz A; Tanay A
    Genome Biol; 2022 Apr; 23(1):100. PubMed ID: 35440087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen.
    Li Z; Kuppe C; Ziegler S; Cheng M; Kabgani N; Menzel S; Zenke M; Kramann R; Costa IG
    Nat Commun; 2021 Nov; 12(1):6386. PubMed ID: 34737275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EpiScanpy: integrated single-cell epigenomic analysis.
    Danese A; Richter ML; Chaichoompu K; Fischer DS; Theis FJ; Colomé-Tatché M
    Nat Commun; 2021 Sep; 12(1):5228. PubMed ID: 34471111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RA3 is a reference-guided approach for epigenetic characterization of single cells.
    Chen S; Yan G; Zhang W; Li J; Jiang R; Lin Z
    Nat Commun; 2021 Apr; 12(1):2177. PubMed ID: 33846355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of computational methods for the analysis of single-cell ATAC-seq data.
    Chen H; Lareau C; Andreani T; Vinyard ME; Garcia SP; Clement K; Andrade-Navarro MA; Buenrostro JD; Pinello L
    Genome Biol; 2019 Nov; 20(1):241. PubMed ID: 31739806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions.
    Baran Y; Bercovich A; Sebe-Pedros A; Lubling Y; Giladi A; Chomsky E; Meir Z; Hoichman M; Lifshitz A; Tanay A
    Genome Biol; 2019 Oct; 20(1):206. PubMed ID: 31604482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.
    Street K; Risso D; Fletcher RB; Das D; Ngai J; Yosef N; Purdom E; Dudoit S
    BMC Genomics; 2018 Jun; 19(1):477. PubMed ID: 29914354
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCANPY: large-scale single-cell gene expression data analysis.
    Wolf FA; Angerer P; Theis FJ
    Genome Biol; 2018 Feb; 19(1):15. PubMed ID: 29409532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning heritability by functional annotation using genome-wide association summary statistics.
    Finucane HK; Bulik-Sullivan B; Gusev A; Trynka G; Reshef Y; Loh PR; Anttila V; Xu H; Zang C; Farh K; Ripke S; Day FR; ; ; ; Purcell S; Stahl E; Lindstrom S; Perry JR; Okada Y; Raychaudhuri S; Daly MJ; Patterson N; Neale BM; Price AL
    Nat Genet; 2015 Nov; 47(11):1228-35. PubMed ID: 26414678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SNPsea: an algorithm to identify cell types, tissues and pathways affected by risk loci.
    Slowikowski K; Hu X; Raychaudhuri S
    Bioinformatics; 2014 Sep; 30(17):2496-7. PubMed ID: 24813542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GREAT improves functional interpretation of cis-regulatory regions.
    McLean CY; Bristor D; Hiller M; Clarke SL; Schaar BT; Lowe CB; Wenger AM; Bejerano G
    Nat Biotechnol; 2010 May; 28(5):495-501. PubMed ID: 20436461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. EpiCarousel: memory- and time-efficient identification of metacells for atlas-level single-cell chromatin accessibility data.
    Li S; Li Y; Sun Y; Li Y; Chen X; Tang S; Chen S
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38588573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Building and analyzing metacells in single-cell genomics data.
    Bilous M; Hérault L; Gabriel AA; Teleman M; Gfeller D
    Mol Syst Biol; 2024 Jul; 20(7):744-766. PubMed ID: 38811801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Concepts and limitations for learning developmental trajectories from single cell genomics.
    Tritschler S; Büttner M; Fischer DS; Lange M; Bergen V; Lickert H; Theis FJ
    Development; 2019 Jun; 146(12):. PubMed ID: 31249007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-cell sequencing techniques from individual to multiomics analyses.
    Kashima Y; Sakamoto Y; Kaneko K; Seki M; Suzuki Y; Suzuki A
    Exp Mol Med; 2020 Sep; 52(9):1419-1427. PubMed ID: 32929221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.