These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. PRDM16 exerts critical role in myocardial metabolism and energetics in type 2 diabetes induced cardiomyopathy. Hu T; Wu Q; Yao Q; Yu J; Jiang K; Wan Y; Tang Q Metabolism; 2023 Sep; 146():155658. PubMed ID: 37433344 [TBL] [Abstract][Full Text] [Related]
3. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. Ding M; Feng N; Tang D; Feng J; Li Z; Jia M; Liu Z; Gu X; Wang Y; Fu F; Pei J J Pineal Res; 2018 Sep; 65(2):e12491. PubMed ID: 29575122 [TBL] [Abstract][Full Text] [Related]
4. Exercise enhances cardiac function by improving mitochondrial dysfunction and maintaining energy homoeostasis in the development of diabetic cardiomyopathy. Wang SY; Zhu S; Wu J; Zhang M; Xu Y; Xu W; Cui J; Yu B; Cao W; Liu J J Mol Med (Berl); 2020 Feb; 98(2):245-261. PubMed ID: 31897508 [TBL] [Abstract][Full Text] [Related]
5. Metabolic stress-induced cardiomyopathy is caused by mitochondrial dysfunction due to attenuated Erk5 signaling. Liu W; Ruiz-Velasco A; Wang S; Khan S; Zi M; Jungmann A; Dolores Camacho-Muñoz M; Guo J; Du G; Xie L; Oceandy D; Nicolaou A; Galli G; Müller OJ; Cartwright EJ; Ji Y; Wang X Nat Commun; 2017 Sep; 8(1):494. PubMed ID: 28887535 [TBL] [Abstract][Full Text] [Related]
6. Streptozotocin-induced type II diabetic rat administered with nonobesogenic high-fat diet is highly susceptible to myocardial ischemia-reperfusion injury: An insight into the function of mitochondria. Ansari M; Gopalakrishnan S; Kurian GA J Cell Physiol; 2019 Apr; 234(4):4104-4114. PubMed ID: 30191974 [TBL] [Abstract][Full Text] [Related]
7. Shengmai San Alleviates Diabetic Cardiomyopathy Through Improvement of Mitochondrial Lipid Metabolic Disorder. Tian J; Tang W; Xu M; Zhang C; Zhao P; Cao T; Shan X; Lu R; Guo W Cell Physiol Biochem; 2018; 50(5):1726-1739. PubMed ID: 30384366 [TBL] [Abstract][Full Text] [Related]
8. Effects of omega-3 fatty acids and metformin combination on diabetic cardiomyopathy in rats through autophagic pathway. Eraky SM; Ramadan NM J Nutr Biochem; 2021 Nov; 97():108798. PubMed ID: 34102283 [TBL] [Abstract][Full Text] [Related]
10. Swimming alleviates myocardial fibrosis of type II diabetic rats through activating miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway. Guo Y; Zhou F; Fan J; Wu T; Jia S; Li J; Chen N PLoS One; 2024; 19(9):e0310136. PubMed ID: 39250437 [TBL] [Abstract][Full Text] [Related]
11. High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of PPAR-γ. Sikder K; Shukla SK; Patel N; Singh H; Rafiq K Cell Physiol Biochem; 2018; 48(3):1317-1331. PubMed ID: 30048968 [TBL] [Abstract][Full Text] [Related]
12. Sodium butyrate improves cognitive dysfunction in high-fat diet/ streptozotocin-induced type 2 diabetic mice by ameliorating hippocampal mitochondrial damage through regulating AMPK/PGC-1α pathway. Lu LL; Liu LZ; Li L; Hu YY; Xian XH; Li WB Neuropharmacology; 2024 Dec; 261():110139. PubMed ID: 39233201 [TBL] [Abstract][Full Text] [Related]
13. The Role of Heme Oxygenase 1 in the Protective Effect of Caloric Restriction against Diabetic Cardiomyopathy. Waldman M; Nudelman V; Shainberg A; Zemel R; Kornwoski R; Aravot D; Peterson SJ; Arad M; Hochhauser E Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100876 [TBL] [Abstract][Full Text] [Related]
14. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving 'SIRT1 and PGC-1α'. Waldman M; Cohen K; Yadin D; Nudelman V; Gorfil D; Laniado-Schwartzman M; Kornwoski R; Aravot D; Abraham NG; Arad M; Hochhauser E Cardiovasc Diabetol; 2018 Aug; 17(1):111. PubMed ID: 30071860 [TBL] [Abstract][Full Text] [Related]
15. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: Role of SIRT6. Yu LM; Dong X; Xue XD; Xu S; Zhang X; Xu YL; Wang ZS; Wang Y; Gao H; Liang YX; Yang Y; Wang HS J Pineal Res; 2021 Jan; 70(1):e12698. PubMed ID: 33016468 [TBL] [Abstract][Full Text] [Related]
16. USP28 Serves as a Key Suppressor of Mitochondrial Morphofunctional Defects and Cardiac Dysfunction in the Diabetic Heart. Xie SY; Liu SQ; Zhang T; Shi WK; Xing Y; Fang WX; Zhang M; Chen MY; Xu SC; Fan MQ; Li LL; Zhang H; Zhao N; Zeng ZX; Chen S; Zeng XF; Deng W; Tang QZ Circulation; 2024 Feb; 149(9):684-706. PubMed ID: 37994595 [TBL] [Abstract][Full Text] [Related]
17. Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. Zhang Z; Wang S; Zhou S; Yan X; Wang Y; Chen J; Mellen N; Kong M; Gu J; Tan Y; Zheng Y; Cai L J Mol Cell Cardiol; 2014 Dec; 77():42-52. PubMed ID: 25268649 [TBL] [Abstract][Full Text] [Related]
18. Akap1 deficiency exacerbates diabetic cardiomyopathy in mice by NDUFS1-mediated mitochondrial dysfunction and apoptosis. Qi B; He L; Zhao Y; Zhang L; He Y; Li J; Li C; Zhang B; Huang Q; Xing J; Li F; Li Y; Ji L Diabetologia; 2020 May; 63(5):1072-1087. PubMed ID: 32072193 [TBL] [Abstract][Full Text] [Related]
19. Farrerol Alleviates Diabetic Cardiomyopathy by Regulating AMPK-Mediated Cardiac Lipid Metabolic Pathways in Type 2 Diabetic Rats. Tu J; Liu Q; Sun H; Gan L Cell Biochem Biophys; 2024 Sep; 82(3):2427-2437. PubMed ID: 38878100 [TBL] [Abstract][Full Text] [Related]
20. GCN2 deficiency ameliorates cardiac dysfunction in diabetic mice by reducing lipotoxicity and oxidative stress. Feng W; Lei T; Wang Y; Feng R; Yuan J; Shen X; Wu Y; Gao J; Ding W; Lu Z Free Radic Biol Med; 2019 Jan; 130():128-139. PubMed ID: 30389499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]