BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38588807)

  • 1. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N
    Li B; Liang J; Baniasadi HR; Kurihara S; Phillips MA; Michael AJ
    J Biol Chem; 2024 May; 300(5):107281. PubMed ID: 38588807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine.
    Knott JM; Römer P; Sumper M
    FEBS Lett; 2007 Jun; 581(16):3081-6. PubMed ID: 17560575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus.
    Ohnuma M; Terui Y; Tamakoshi M; Mitome H; Niitsu M; Samejima K; Kawashima E; Oshima T
    J Biol Chem; 2005 Aug; 280(34):30073-82. PubMed ID: 15983049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary diversification in polyamine biosynthesis.
    Minguet EG; Vera-Sirera F; Marina A; Carbonell J; Blázquez MA
    Mol Biol Evol; 2008 Oct; 25(10):2119-28. PubMed ID: 18653732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants.
    Vuosku J; Karppinen K; Muilu-Mäkelä R; Kusano T; Sagor GHM; Avia K; Alakärppä E; Kestilä J; Suokas M; Nickolov K; Hamberg L; Savolainen O; Häggman H; Sarjala T
    Ann Bot; 2018 May; 121(6):1243-1256. PubMed ID: 29462244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of mammalian spermidine synthase and spermine synthase.
    Pegg AE; Shuttleworth K; Hibasami H
    Biochem J; 1981 Aug; 197(2):315-20. PubMed ID: 6798961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread occurrence of norspermidine and norspermine in eukaryotic algae.
    Hamana K; Matsuzaki S
    J Biochem; 1982 Apr; 91(4):1321-8. PubMed ID: 7096289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on polyamine biosynthesis in Euglena gracilis.
    Aleksijevic A; Grove J; Schuber F
    Biochim Biophys Acta; 1979 Nov; 565(1):199-207. PubMed ID: 116684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct difference in the polyamine compositions of bryophyta and pteridophyta.
    Hamana K; Matsuzaki S
    J Biochem; 1985 Jun; 97(6):1595-601. PubMed ID: 4030739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota.
    Hanfrey CC; Pearson BM; Hazeldine S; Lee J; Gaskin DJ; Woster PM; Phillips MA; Michael AJ
    J Biol Chem; 2011 Dec; 286(50):43301-12. PubMed ID: 22025614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polyamine oxidase from lycophyte Selaginella lepidophylla (SelPAO5), unlike that of angiosperms, back-converts thermospermine to norspermidine.
    Sagor GH; Inoue M; Kim DW; Kojima S; Niitsu M; Berberich T; Kusano T
    FEBS Lett; 2015 Oct; 589(20 Pt B):3071-8. PubMed ID: 26348400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of thermospermine synthase from
    Sekula B; Dauter Z
    Biochem J; 2018 Feb; 475(4):787-802. PubMed ID: 29367265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine biosynthetic diversity in plants and algae.
    Fuell C; Elliott KA; Hanfrey CC; Franceschetti M; Michael AJ
    Plant Physiol Biochem; 2010 Jul; 48(7):513-20. PubMed ID: 20227886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules.
    Efrose RC; Flemetakis E; Sfichi L; Stedel C; Kouri ED; Udvardi MK; Kotzabasis K; Katinakis P
    Planta; 2008 Jun; 228(1):37-49. PubMed ID: 18320213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines of primitive apterygotan insects: springtails, silverfish and a bristletail.
    Hamana K; Uemiya H; Niitsu M
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jan; 137(1):75-9. PubMed ID: 14698912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic organization of plant aminopropyl transferases.
    Rodríguez-Kessler M; Delgado-Sánchez P; Rodríguez-Kessler GT; Moriguchi T; Jiménez-Bremont JF
    Plant Physiol Biochem; 2010 Jul; 48(7):574-90. PubMed ID: 20381365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine.
    Hidese R; Tse KM; Kimura S; Mizohata E; Fujita J; Horai Y; Umezawa N; Higuchi T; Niitsu M; Oshima T; Imanaka T; Inoue T; Fujiwara S
    FEBS J; 2017 Nov; 284(21):3684-3701. PubMed ID: 28881427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation.
    Green R; Hanfrey CC; Elliott KA; McCloskey DE; Wang X; Kanugula S; Pegg AE; Michael AJ
    Mol Microbiol; 2011 Aug; 81(4):1109-24. PubMed ID: 21762220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine metabolism in Acanthamoeba: polyamine content and synthesis of ornithine, putrescine, and diaminopropane.
    Kim BG; Sobota A; Bitonti AJ; McCann PP; Byers TJ
    J Protozool; 1987 Aug; 34(3):278-84. PubMed ID: 3656216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.