These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38588807)

  • 1. Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N
    Li B; Liang J; Baniasadi HR; Kurihara S; Phillips MA; Michael AJ
    J Biol Chem; 2024 May; 300(5):107281. PubMed ID: 38588807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Putative spermine synthases from Thalassiosira pseudonana and Arabidopsis thaliana synthesize thermospermine rather than spermine.
    Knott JM; Römer P; Sumper M
    FEBS Lett; 2007 Jun; 581(16):3081-6. PubMed ID: 17560575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus.
    Ohnuma M; Terui Y; Tamakoshi M; Mitome H; Niitsu M; Samejima K; Kawashima E; Oshima T
    J Biol Chem; 2005 Aug; 280(34):30073-82. PubMed ID: 15983049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary diversification in polyamine biosynthesis.
    Minguet EG; Vera-Sirera F; Marina A; Carbonell J; Blázquez MA
    Mol Biol Evol; 2008 Oct; 25(10):2119-28. PubMed ID: 18653732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants.
    Vuosku J; Karppinen K; Muilu-Mäkelä R; Kusano T; Sagor GHM; Avia K; Alakärppä E; Kestilä J; Suokas M; Nickolov K; Hamberg L; Savolainen O; Häggman H; Sarjala T
    Ann Bot; 2018 May; 121(6):1243-1256. PubMed ID: 29462244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of mammalian spermidine synthase and spermine synthase.
    Pegg AE; Shuttleworth K; Hibasami H
    Biochem J; 1981 Aug; 197(2):315-20. PubMed ID: 6798961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Widespread occurrence of norspermidine and norspermine in eukaryotic algae.
    Hamana K; Matsuzaki S
    J Biochem; 1982 Apr; 91(4):1321-8. PubMed ID: 7096289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on polyamine biosynthesis in Euglena gracilis.
    Aleksijevic A; Grove J; Schuber F
    Biochim Biophys Acta; 1979 Nov; 565(1):199-207. PubMed ID: 116684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct difference in the polyamine compositions of bryophyta and pteridophyta.
    Hamana K; Matsuzaki S
    J Biochem; 1985 Jun; 97(6):1595-601. PubMed ID: 4030739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota.
    Hanfrey CC; Pearson BM; Hazeldine S; Lee J; Gaskin DJ; Woster PM; Phillips MA; Michael AJ
    J Biol Chem; 2011 Dec; 286(50):43301-12. PubMed ID: 22025614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The polyamine oxidase from lycophyte Selaginella lepidophylla (SelPAO5), unlike that of angiosperms, back-converts thermospermine to norspermidine.
    Sagor GH; Inoue M; Kim DW; Kojima S; Niitsu M; Berberich T; Kusano T
    FEBS Lett; 2015 Oct; 589(20 Pt B):3071-8. PubMed ID: 26348400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of thermospermine synthase from
    Sekula B; Dauter Z
    Biochem J; 2018 Feb; 475(4):787-802. PubMed ID: 29367265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine biosynthetic diversity in plants and algae.
    Fuell C; Elliott KA; Hanfrey CC; Franceschetti M; Michael AJ
    Plant Physiol Biochem; 2010 Jul; 48(7):513-20. PubMed ID: 20227886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules.
    Efrose RC; Flemetakis E; Sfichi L; Stedel C; Kouri ED; Udvardi MK; Kotzabasis K; Katinakis P
    Planta; 2008 Jun; 228(1):37-49. PubMed ID: 18320213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamines of primitive apterygotan insects: springtails, silverfish and a bristletail.
    Hamana K; Uemiya H; Niitsu M
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Jan; 137(1):75-9. PubMed ID: 14698912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic organization of plant aminopropyl transferases.
    Rodríguez-Kessler M; Delgado-Sánchez P; Rodríguez-Kessler GT; Moriguchi T; Jiménez-Bremont JF
    Plant Physiol Biochem; 2010 Jul; 48(7):574-90. PubMed ID: 20381365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site geometry of a novel aminopropyltransferase for biosynthesis of hyperthermophile-specific branched-chain polyamine.
    Hidese R; Tse KM; Kimura S; Mizohata E; Fujita J; Horai Y; Umezawa N; Higuchi T; Niitsu M; Oshima T; Imanaka T; Inoue T; Fujiwara S
    FEBS J; 2017 Nov; 284(21):3684-3701. PubMed ID: 28881427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants.
    Cvikrová M; Gemperlová L; Martincová O; Vanková R
    Plant Physiol Biochem; 2013 Dec; 73():7-15. PubMed ID: 24029075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalysing de novo diamine to triamine formation.
    Green R; Hanfrey CC; Elliott KA; McCloskey DE; Wang X; Kanugula S; Pegg AE; Michael AJ
    Mol Microbiol; 2011 Aug; 81(4):1109-24. PubMed ID: 21762220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamine metabolism in Acanthamoeba: polyamine content and synthesis of ornithine, putrescine, and diaminopropane.
    Kim BG; Sobota A; Bitonti AJ; McCann PP; Byers TJ
    J Protozool; 1987 Aug; 34(3):278-84. PubMed ID: 3656216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.