BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38589375)

  • 1. Metabolic plasticity, essentiality and therapeutic potential of ribose-5-phosphate synthesis in Toxoplasma gondii.
    Guo X; Ji N; Guo Q; Wang M; Du H; Pan J; Xiao L; Gupta N; Feng Y; Xia N
    Nat Commun; 2024 Apr; 15(1):2999. PubMed ID: 38589375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability.
    Olson WJ; Martorelli Di Genova B; Gallego-Lopez G; Dawson AR; Stevenson D; Amador-Noguez D; Knoll LJ
    PLoS Pathog; 2020 Apr; 16(4):e1008432. PubMed ID: 32255806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transketolase Deficiency Protects the Liver from DNA Damage by Increasing Levels of Ribose 5-Phosphate and Nucleotides.
    Li M; Lu Y; Li Y; Tong L; Gu XC; Meng J; Zhu Y; Wu L; Feng M; Tian N; Zhang P; Xu T; Lin SH; Tong X
    Cancer Res; 2019 Jul; 79(14):3689-3701. PubMed ID: 31101762
    [No Abstract]   [Full Text] [Related]  

  • 4. A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of
    Nitzsche R; Günay-Esiyok Ö; Tischer M; Zagoriy V; Gupta N
    J Biol Chem; 2017 Sep; 292(37):15225-15239. PubMed ID: 28726641
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii.
    Nitzsche R; Zagoriy V; Lucius R; Gupta N
    J Biol Chem; 2016 Jan; 291(1):126-41. PubMed ID: 26518878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii.
    Xia N; Guo X; Guo Q; Gupta N; Ji N; Shen B; Xiao L; Feng Y
    PLoS Pathog; 2022 Sep; 18(9):e1010864. PubMed ID: 36121870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboneogenesis in yeast.
    Clasquin MF; Melamud E; Singer A; Gooding JR; Xu X; Dong A; Cui H; Campagna SR; Savchenko A; Yakunin AF; Rabinowitz JD; Caudy AA
    Cell; 2011 Jun; 145(6):969-80. PubMed ID: 21663798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mitochondrial Pyruvate Carrier Coupling Glycolysis and the Tricarboxylic Acid Cycle Is Required for the Asexual Reproduction of Toxoplasma gondii.
    Lyu C; Chen Y; Meng Y; Yang J; Ye S; Niu Z; Ei-Debs I; Gupta N; Shen B
    Microbiol Spectr; 2023 Mar; 11(2):e0504322. PubMed ID: 36920199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by Toxoplasma gondii.
    Shukla A; Olszewski KL; Llinás M; Rommereim LM; Fox BA; Bzik DJ; Xia D; Wastling J; Beiting D; Roos DS; Shanmugam D
    Int J Parasitol; 2018 Oct; 48(12):955-968. PubMed ID: 30176233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The enzymes of the classical pentose phosphate pathway display differential activities in procyclic and bloodstream forms of Trypanosoma brucei.
    Cronín CN; Nolan DP; Voorheis HP
    FEBS Lett; 1989 Feb; 244(1):26-30. PubMed ID: 2924907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate Homeostasis as a Determinant of Parasite Growth and Metabolic Plasticity in Toxoplasma gondii.
    Xia N; Ye S; Liang X; Chen P; Zhou Y; Fang R; Zhao J; Gupta N; Yang S; Yuan J; Shen B
    mBio; 2019 Jun; 10(3):. PubMed ID: 31186321
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Takano Y; Nakano T; Ikeda M
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):710-7. PubMed ID: 11601619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential role of pyrophosphate homeostasis mediated by the pyrophosphate-dependent phosphofructokinase in Toxoplasma gondii.
    Yang X; Yin X; Liu J; Niu Z; Yang J; Shen B
    PLoS Pathog; 2022 Feb; 18(2):e1010293. PubMed ID: 35104280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plastidial pentose phosphate pathway is essential for postglobular embryo development in
    Andriotis VME; Smith AM
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15297-15306. PubMed ID: 31296566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatic phosphoribosyl pyrophosphate concentration. Regulation by the oxidative pentose phosphate pathway and cellular energy status.
    Kunjara S; Sochor M; Ali SA; Greenbaum AL; McLean P
    Biochem J; 1987 May; 244(1):101-8. PubMed ID: 2444209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway.
    Shayota BJ; Donti TR; Xiao J; Gijavanekar C; Kennedy AD; Hubert L; Rodan L; Vanderpluym C; Nowak C; Bjornsson HT; Ganetzky R; Berry GT; Pappan KL; Sutton VR; Sun Q; Elsea SH
    Mol Genet Metab; 2020; 131(1-2):147-154. PubMed ID: 32828637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structures of Thermoplasma volcanium phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs.
    Cherney MM; Cherney LT; Garen CR; James MN
    J Mol Biol; 2011 Nov; 413(4):844-56. PubMed ID: 21963988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in pathways of pentose phosphate formation in relation to phosphoribosyl pyrophosphate synthesis in the developing rat kidney. Effects of glucose concentration and electron acceptors.
    Sochor M; Kunjara S; Greenbaum AL; McLean P
    J Dev Physiol; 1989 Sep; 12(3):135-43. PubMed ID: 2483165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.