These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38589386)

  • 41. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance.
    Ye D; Yu Y; Tang J; Liu L; Wu Y
    Nanoscale; 2016 May; 8(19):10406-14. PubMed ID: 27141910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of Molybdenum Sulfide/Tellurium Hetero-Composite by a Simple One-Pot Hydrothermal Technique for High-Performance Supercapacitor Electrode Material.
    Karki HP; Kim H; Jung J; Oh J
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MOF-deviated zinc-nickel-cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors.
    Raphael Ezeigwe E; Dong L; Wang J; Wang L; Yan W; Zhang J
    J Colloid Interface Sci; 2020 Aug; 574():140-151. PubMed ID: 32311536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cycling stability of Fe
    Guo G; Su Q; Zhou W; Wei M; Wang Y
    RSC Adv; 2023 Jan; 13(6):3643-3651. PubMed ID: 36756600
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High Energy Density Heteroatom (O, N and S) Enriched Activated Carbon for Rational Design of Symmetric Supercapacitors.
    Manikandan R; Raj CJ; Moulton SE; Todorov TS; Yu KH; Kim BC
    Chemistry; 2021 Jan; 27(2):669-682. PubMed ID: 32700787
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rational Design of Porous Nanowall Arrays of Ultrafine Co
    Cao B; Liu B; Xi Z; Cheng Y; Xu X; Jing P; Cheng R; Feng SP; Zhang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47517-47528. PubMed ID: 36240119
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.
    Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F
    Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation.
    Yue XM; An ZY; Ye M; Liu ZJ; Xiao CC; Huang Y; Han YJ; Zhang SQ; Zhu JS
    Molecules; 2019 Oct; 24(19):. PubMed ID: 31590393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors.
    Song Y; Zhang M; Liu T; Li T; Guo D; Liu XX
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382437
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Supercapacitors and triboelectric nanogenerators based on electrodes of greener iron nanoparticles/carbon nanotubes composites.
    Dos Reis GS; de Oliveira HP; Candido ICM; Freire AL; Molaiyan P; Dotto GL; Grimm A; Mikkola JP
    Sci Rep; 2024 May; 14(1):11555. PubMed ID: 38773205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile Synthesis of Ag-Doped Urchin-like MnO
    Feng Y; Qu H; Wang Y; Wang L; Wang Y; Yang D; Ding B; Sun Y; Guo J; Dai S
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasonication-assisted fabrication of hierarchical architectures of copper oxide/zinc antimonate nanocomposites based supercapacitor electrode materials.
    Balasubramaniam M; Balakumar S
    Ultrason Sonochem; 2019 Sep; 56():337-349. PubMed ID: 31101271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.
    Ali GAM; Divyashree A; Supriya S; Chong KF; Ethiraj AS; Reddy MV; Algarni H; Hegde G
    Dalton Trans; 2017 Oct; 46(40):14034-14044. PubMed ID: 28979958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sophisticated Structural Tuning of NiMoO
    Di Y; Xiang J; Bu N; Loy S; Yang W; Zhao R; Wu F; Sun X; Wu Z
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. V
    Chen W; Zhang L; Ren H; Miao T; Wang Z; Zhan K; Yang J; Zhao B
    J Colloid Interface Sci; 2022 Nov; 626():59-67. PubMed ID: 35780552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors.
    Kim M; Kim J
    Phys Chem Chem Phys; 2014 Jun; 16(23):11323-36. PubMed ID: 24789348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulose graphitic carbon directed iron oxide interfaced polypyrrole electrode materials for high performance supercapacitors.
    Palem RR; Devendrachari MC; Shimoga G; Bathula C; Lee SH; Siva Kumar N; Al-Fatesh AS; Kim DY; Hwang K; Choi DS; Kim SY
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127154. PubMed ID: 37793524
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnesium Bismuth Ferrite Nitrogen-Doped Carbon Nanomagnetic Perovskite: Synthesis and Characterization as a High-Performance Electrode in a Supercapacitor for Energy Storage.
    Al-Maswari BM; Al-Zaqri N; Alkanad K; AlOstoot FH; Boshaala A; Radhika RT; Venkatesha BM
    ACS Omega; 2023 May; 8(18):16145-16157. PubMed ID: 37179637
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-Step Hydrothermal Synthesis of MoO
    Deng Y; Zhao Y; Peng K; Yu L
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36314603
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
    Rahman MM; Joy PM; Uddin MN; Mukhlish MZB; Khan MMR
    Heliyon; 2021 Jul; 7(7):e07407. PubMed ID: 34286117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.