These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38589399)

  • 41. Synthesis and Characterization of a Hybrid Cement Based on Fly Ash, Metakaolin and Portland Cement Clinker.
    Barboza-Chavez AC; Gómez-Zamorano LY; Acevedo-Dávila AJL
    Materials (Basel); 2020 Feb; 13(5):. PubMed ID: 32121392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilization of Treated Agricultural Residue Ash as Sodium Silicate in Alkali Activated Slag Systems.
    Ataie FF
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33440645
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigating the Mechanical Properties and Durability of Metakaolin-Incorporated Mortar by Different Curing Methods.
    Dong Y; Pei L; Fu J; Yang Y; Liu T; Liang H; Yang H
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties, Microstructure Development and Life Cycle Assessment of Alkali-Activated Materials Containing Steel Slag under Different Alkali Equivalents.
    Ji X; Wang X; Zhao X; Wang Z; Zhang H; Liu J
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Resistance of blended alkali-activated fly ash-OPC mortar to mild-concentration sulfuric and acetic acid attack.
    Chen K; Wu D; Fei S; Pan C; Shen X; Zhang C; Hu J
    Environ Sci Pollut Res Int; 2022 Apr; 29(17):25694-25708. PubMed ID: 34845643
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Portland Cement versus Sulphoaluminate Cement on the Properties of Blended Lime-Based Mortars Prepared by Carbide Slag.
    Nie S; Wang J; Lan M; Wang Y; Zhang Q
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934721
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of air pollution-controlled residue of a sewage sludge incinerator on the drying shrinkage and the pore structure of alkali-activated materials.
    Ban J; Sun K; Lu JX; Ali HA; Yao J; Sunahara G; Poon CS
    Waste Manag; 2023 Apr; 161():178-186. PubMed ID: 36889124
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Valorization of quartz powder for drying shrinkage and carbonation resistance of alkali-activated slag cement.
    Rashad AM; Sadek DM; Gharieb M
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45191-45203. PubMed ID: 35141826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete.
    Mohamed OA
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extensive use of waste glass in one-part alkali-activated materials: Towards sustainable construction practices.
    Samarakoon MH; Ranjith PG; Hui Duan W; Haque A; Chen BK
    Waste Manag; 2021 Jul; 130():1-11. PubMed ID: 34044359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancing Hydraulic Lime Mortar with Metakaolin: A Study on Improving Restoration Materials for Historic Buildings.
    Wang X; Shang H; Zhou J; Gu L; Xiao Z; Wang X; Wang R
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063839
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of water-to-binder ratio (W/B) on pore structure of one-part alkali activated mortar.
    Yusslee E; Beskhyroun S
    Heliyon; 2023 Jan; 9(1):e12983. PubMed ID: 36820192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Research on the Working Performance and the Corresponding Mechanical Strength of Polyaluminum Sulfate Early Strength Alkali-Free Liquid Accelerator Matrix Cement.
    Wang L; He X; Shu C; Wei Z; Wang H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption Efficiency of Cadmium (II) by Different Alkali-Activated Materials.
    Mladenović Nikolić N; Kljajević L; Nenadović SS; Potočnik J; Knežević S; Dolenec S; Trivunac K
    Gels; 2024 May; 10(5):. PubMed ID: 38786234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Accelerating the Reaction Kinetics of Na
    Wang H; Wang L; Xu Y; Cao K; Ge Y; Wang X; Li Q
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Effects of Partial Replacement of Ground Granulated Blast Furnace Slag by Ground Wood Ash on Alkali-Activated Binder Systems.
    Teker Ercan EE; Cwirzen A; Habermehl-Cwirzen K
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In-situ shrinkage measurement of alkali-activated materials using focused ion beam combined with environmental scanning electron microscopy.
    Chen Z; Ding H; Zhang G; Chai P
    Heliyon; 2023 Nov; 9(11):e22507. PubMed ID: 38197088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Influence of Acid Casein on the Selected Properties of Lime-Metakaolin Mortars.
    Brzyski P; Boris R
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Graphene Oxide on Properties of Alkali-Activated Slag.
    Dong Q; Wan L; Luan C; Wang J; Du P
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chloride Ions' Penetration of Fly Ash and Ground Granulated Blast Furnace Slags-Based Alkali-Activated Mortars.
    Duży P; Sitarz M; Adamczyk M; Choińska M; Hager I
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.