These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38589721)

  • 1. Artificial Intelligence for Clinically Meaningful Outcome Prediction in Orthopedic Research: Current Applications and Limitations.
    Jang SJ; Rosenstadt J; Lee E; Kunze KN
    Curr Rev Musculoskelet Med; 2024 Jun; 17(6):185-206. PubMed ID: 38589721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review.
    Kunze KN; Krivicich LM; Clapp IM; Bodendorfer BM; Nwachukwu BU; Chahla J; Nho SJ
    Arthroscopy; 2022 Jun; 38(6):2090-2105. PubMed ID: 34968653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty?
    Kumar V; Roche C; Overman S; Simovitch R; Flurin PH; Wright T; Zuckerman J; Routman H; Teredesai A
    Clin Orthop Relat Res; 2020 Oct; 478(10):2351-2363. PubMed ID: 32332242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concerns surrounding application of artificial intelligence in hip and knee arthroplasty : a review of literature and recommendations for meaningful adoption.
    Polisetty TS; Jain S; Pang M; Karnuta JM; Vigdorchik JM; Nawabi DH; Wyles CC; Ramkumar PN
    Bone Joint J; 2022 Dec; 104-B(12):1292-1303. PubMed ID: 36453039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Personalized Medicine in Orthopaedic Surgery Through Artificial Intelligence: A Critical Analysis Review.
    Huffman N; Pasqualini I; Khan ST; Klika AK; Deren ME; Jin Y; Kunze KN; Piuzzi NS
    JBJS Rev; 2024 Mar; 12(3):. PubMed ID: 38466797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology.
    ; Parasa S; Berzin T; Leggett C; Gross S; Repici A; Ahmad OF; Chiang A; Coelho-Prabhu N; Cohen J; Dekker E; Keswani RN; Kahn CE; Hassan C; Petrick N; Mountney P; Ng J; Riegler M; Mori Y; Saito Y; Thakkar S; Waxman I; Wallace MB; Sharma P
    Gastrointest Endosc; 2024 Apr; ():. PubMed ID: 38639679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Machine Learning Algorithms Predict Which Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty?
    Fontana MA; Lyman S; Sarker GK; Padgett DE; MacLean CH
    Clin Orthop Relat Res; 2019 Jun; 477(6):1267-1279. PubMed ID: 31094833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning algorithms do not outperform preoperative thresholds in predicting clinically meaningful improvements after total knee arthroplasty.
    Zhang S; Lau BPH; Ng YH; Wang X; Chua W
    Knee Surg Sports Traumatol Arthrosc; 2022 Aug; 30(8):2624-2630. PubMed ID: 34245310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence and machine learning in orthopedic surgery: a systematic review protocol.
    Maffulli N; Rodriguez HC; Stone IW; Nam A; Song A; Gupta M; Alvarado R; Ramon D; Gupta A
    J Orthop Surg Res; 2020 Oct; 15(1):478. PubMed ID: 33076945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryo selection through artificial intelligence versus embryologists: a systematic review.
    Salih M; Austin C; Warty RR; Tiktin C; Rolnik DL; Momeni M; Rezatofighi H; Reddy S; Smith V; Vollenhoven B; Horta F
    Hum Reprod Open; 2023; 2023(3):hoad031. PubMed ID: 37588797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association Between Preoperative Patient Factors and Clinically Meaningful Outcomes After Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Machine Learning Analysis.
    Kunze KN; Polce EM; Clapp IM; Alter T; Nho SJ
    Am J Sports Med; 2022 Mar; 50(3):746-756. PubMed ID: 35006010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Intelligence and Predictive Modeling in Spinal Oncology: A Narrative Review.
    Kuijten RH; Zijlstra H; Groot OQ; Schwab JH
    Int J Spine Surg; 2023 Jun; 17(S1):S45-S56. PubMed ID: 37164481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF.
    VerMilyea M; Hall JMM; Diakiw SM; Johnston A; Nguyen T; Perugini D; Miller A; Picou A; Murphy AP; Perugini M
    Hum Reprod; 2020 Apr; 35(4):770-784. PubMed ID: 32240301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence-based applications in shoulder surgery leaves much to be desired: a systematic review.
    Gupta P; Haeberle HS; Zimmer ZR; Levine WN; Williams RJ; Ramkumar PN
    JSES Rev Rep Tech; 2023 May; 3(2):189-200. PubMed ID: 37588443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF.
    Diakiw SM; Hall JMM; VerMilyea MD; Amin J; Aizpurua J; Giardini L; Briones YG; Lim AYX; Dakka MA; Nguyen TV; Perugini D; Perugini M
    Hum Reprod; 2022 Jul; 37(8):1746-1759. PubMed ID: 35674312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Editorial Commentary: Artificial Intelligence Analysis of Biomedical, Large, Clinical Registry Data Using Machine Learning Requires Tens of Thousands of Subjects and a Focus on Substantial Clinical Benefit: Minimal Clinically Important Difference Is too Low a Bar.
    Harris JD
    Arthroscopy; 2024 Apr; 40(4):1164-1167. PubMed ID: 38219135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Machine Learning Algorithms to Predict Clinically Meaningful Improvement After Arthroscopic Anterior Cruciate Ligament Reconstruction.
    Kunze KN; Polce EM; Ranawat AS; Randsborg PH; Williams RJ; Allen AA; Nwachukwu BU; ; Pearle A; Stein BS; Dines D; Kelly A; Kelly B; Rose H; Maynard M; Strickland S; Coleman S; Hannafin J; MacGillivray J; Marx R; Warren R; Rodeo S; Fealy S; O'Brien S; Wickiewicz T; Dines JS; Cordasco F; Altcheck D
    Orthop J Sports Med; 2021 Oct; 9(10):23259671211046575. PubMed ID: 34671691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence in spine care: current applications and future utility.
    Hornung AL; Hornung CM; Mallow GM; Barajas JN; Rush A; Sayari AJ; Galbusera F; Wilke HJ; Colman M; Phillips FM; An HS; Samartzis D
    Eur Spine J; 2022 Aug; 31(8):2057-2081. PubMed ID: 35347425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sports Medicine and Artificial Intelligence: A Primer.
    Ramkumar PN; Luu BC; Haeberle HS; Karnuta JM; Nwachukwu BU; Williams RJ
    Am J Sports Med; 2022 Mar; 50(4):1166-1174. PubMed ID: 33900125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.