BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38589921)

  • 41. Hopper: a mathematically optimal algorithm for sketching biological data.
    DeMeo B; Berger B
    Bioinformatics; 2020 Jul; 36(Suppl_1):i236-i241. PubMed ID: 32657375
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phitest for analyzing the homogeneity of single-cell populations.
    Li WV
    Bioinformatics; 2022 Apr; 38(9):2639-2641. PubMed ID: 35238346
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data.
    Lin P; Troup M; Ho JW
    Genome Biol; 2017 Mar; 18(1):59. PubMed ID: 28351406
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MultiBaC: an R package to remove batch effects in multi-omic experiments.
    Ugidos M; Nueda MJ; Prats-Montalbán JM; Ferrer A; Conesa A; Tarazona S
    Bioinformatics; 2022 Apr; 38(9):2657-2658. PubMed ID: 35238331
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Non-negative Independent Factor Analysis disentangles discrete and continuous sources of variation in scRNA-seq data.
    Mao W; Pouyan MB; Kostka D; Chikina M
    Bioinformatics; 2022 May; 38(10):2749-2756. PubMed ID: 35561207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder.
    Yu B; Chen C; Qi R; Zheng R; Skillman-Lawrence PJ; Wang X; Ma A; Gu H
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33300547
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ursa: A Comprehensive Multiomics Toolbox for High-Throughput Single-Cell Analysis.
    Pan L; Mou T; Huang Y; Hong W; Yu M; Li X
    Mol Biol Evol; 2023 Dec; 40(12):. PubMed ID: 38091963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. pyInfinityFlow: optimized imputation and analysis of high-dimensional flow cytometry data for millions of cells.
    Ferchen K; Salomonis N; Grimes HL
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37097893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cytocipher determines significantly different populations of cells in single-cell RNA-seq data.
    Balderson B; Piper M; Thor S; Bodén M
    Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37449901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An end-to-end workflow for multiplexed image processing and analysis.
    Windhager J; Zanotelli VRT; Schulz D; Meyer L; Daniel M; Bodenmiller B; Eling N
    Nat Protoc; 2023 Nov; 18(11):3565-3613. PubMed ID: 37816904
    [TBL] [Abstract][Full Text] [Related]  

  • 52. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SCell: integrated analysis of single-cell RNA-seq data.
    Diaz A; Liu SJ; Sandoval C; Pollen A; Nowakowski TJ; Lim DA; Kriegstein A
    Bioinformatics; 2016 Jul; 32(14):2219-20. PubMed ID: 27153637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. scCAN: single-cell clustering using autoencoder and network fusion.
    Tran B; Tran D; Nguyen H; Ro S; Nguyen T
    Sci Rep; 2022 Jun; 12(1):10267. PubMed ID: 35715568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SIMBSIG: similarity search and clustering for biobank-scale data.
    Adamer MF; Roellin E; Bourguignon L; Borgwardt K
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hubness reduction improves clustering and trajectory inference in single-cell transcriptomic data.
    Amblard E; Bac J; Chervov A; Soumelis V; Zinovyev A
    Bioinformatics; 2022 Jan; 38(4):1045-1051. PubMed ID: 34871374
    [TBL] [Abstract][Full Text] [Related]  

  • 57. coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.
    Zeng P; Lin Z
    PLoS Comput Biol; 2021 Jun; 17(6):e1009064. PubMed ID: 34077420
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An interpretable framework for clustering single-cell RNA-Seq datasets.
    Zhang JM; Fan J; Fan HC; Rosenfeld D; Tse DN
    BMC Bioinformatics; 2018 Mar; 19(1):93. PubMed ID: 29523077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. scCNC: a method based on capsule network for clustering scRNA-seq data.
    Wang HY; Zhao JP; Zheng CH; Su YS
    Bioinformatics; 2022 Aug; 38(15):3703-3709. PubMed ID: 35699473
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets.
    Kratochvíl M; Hunewald O; Heirendt L; Verissimo V; Vondrášek J; Satagopam VP; Schneider R; Trefois C; Ollert M
    Gigascience; 2020 Nov; 9(11):. PubMed ID: 33205814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.