BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38589921)

  • 61. AMC: accurate mutation clustering from single-cell DNA sequencing data.
    Yu Z; Du F
    Bioinformatics; 2022 Mar; 38(6):1732-1734. PubMed ID: 34951625
    [TBL] [Abstract][Full Text] [Related]  

  • 62. HGC: fast hierarchical clustering for large-scale single-cell data.
    Zou Z; Hua K; Zhang X
    Bioinformatics; 2021 Nov; 37(21):3964-3965. PubMed ID: 34096998
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Semla: a versatile toolkit for spatially resolved transcriptomics analysis and visualization.
    Larsson L; Franzén L; Ståhl PL; Lundeberg J
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37846051
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 65. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment.
    Fei T; Yu T
    Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185
    [TBL] [Abstract][Full Text] [Related]  

  • 66. HCMMCNVs: hierarchical clustering mixture model of copy number variants detection using whole exome sequencing technology.
    Song C; Su SC; Huo Z; Vural S; Galvin JE; Chang LC
    Bioinformatics; 2021 Sep; 37(18):3026-3028. PubMed ID: 33714997
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Joint learning dimension reduction and clustering of single-cell RNA-sequencing data.
    Wu W; Ma X
    Bioinformatics; 2020 Jun; 36(12):3825-3832. PubMed ID: 32246821
    [TBL] [Abstract][Full Text] [Related]  

  • 68. RTK: efficient rarefaction analysis of large datasets.
    Saary P; Forslund K; Bork P; Hildebrand F
    Bioinformatics; 2017 Aug; 33(16):2594-2595. PubMed ID: 28398468
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CYBERTRACK2.0: zero-inflated model-based cell clustering and population tracking method for longitudinal mass cytometry data.
    Minoura K; Abe K; Maeda Y; Nishikawa H; Shimamura T
    Bioinformatics; 2021 Jul; 37(11):1632-1634. PubMed ID: 33051653
    [TBL] [Abstract][Full Text] [Related]  

  • 70. SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Bioinformatics; 2021 Jul; 37(Suppl_1):i317-i326. PubMed ID: 34252968
    [TBL] [Abstract][Full Text] [Related]  

  • 71. pyaging: a Python-based compendium of GPU-optimized aging clocks.
    de Lima Camillo LP
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603598
    [TBL] [Abstract][Full Text] [Related]  

  • 72. STACAS: Sub-Type Anchor Correction for Alignment in Seurat to integrate single-cell RNA-seq data.
    Andreatta M; Carmona SJ
    Bioinformatics; 2021 May; 37(6):882-884. PubMed ID: 32845323
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Palo: spatially aware color palette optimization for single-cell and spatial data.
    Hou W; Ji Z
    Bioinformatics; 2022 Jul; 38(14):3654-3656. PubMed ID: 35642896
    [TBL] [Abstract][Full Text] [Related]  

  • 74. GdClean: removal of Gadolinium contamination in mass cytometry data.
    Liu J; Liu L; Qu S; Zhang T; Wang D; Ji Q; Wang T; Shi H; Song K; Fang W; Chen W; Yin W
    Bioinformatics; 2021 Dec; 37(24):4787-4792. PubMed ID: 34320625
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Determination of essential phenotypic elements of clusters in high-dimensional entities-DEPECHE.
    Theorell A; Bryceson YT; Theorell J
    PLoS One; 2019; 14(3):e0203247. PubMed ID: 30845234
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Transfer learning for clustering single-cell RNA-seq data crossing-species and batch, case on uterine fibroids.
    Wang YM; Sun Y; Wang B; Wu Z; He XY; Zhao Y
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 37991248
    [TBL] [Abstract][Full Text] [Related]  

  • 77. scPathoQuant: a tool for efficient alignment and quantification of pathogen sequence reads from 10× single cell sequencing datasets.
    Whitmore LS; Tisoncik-Go J; Gale M
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38478395
    [TBL] [Abstract][Full Text] [Related]  

  • 78. UICPC: Centrality-based clustering for scRNA-seq data analysis without user input.
    Chowdhury HA; Bhattacharyya DK; Kalita JK
    Comput Biol Med; 2021 Oct; 137():104820. PubMed ID: 34508973
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SIMLR: A Tool for Large-Scale Genomic Analyses by Multi-Kernel Learning.
    Wang B; Ramazzotti D; De Sano L; Zhu J; Pierson E; Batzoglou S
    Proteomics; 2018 Jan; 18(2):. PubMed ID: 29265724
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A computational approach for phenotypic comparisons of cell populations in high-dimensional cytometry data.
    Platon L; Pejoski D; Gautreau G; Targat B; Le Grand R; Beignon AS; Tchitchek N
    Methods; 2018 Jan; 132():66-75. PubMed ID: 28917725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.