These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38590347)

  • 1. One-step flow synthesis of size-controlled polymer nanogels in a fluorocarbon microfluidic chip.
    Montalbo RCK; Wu MJ; Tu HL
    RSC Adv; 2024 Apr; 14(16):11258-11265. PubMed ID: 38590347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of Fluorescent Polymer Nanoparticles Using Different Microfluidic Mixers.
    Chen H; Celik AE; Mutschler A; Combes A; Runser A; Klymchenko AS; Lecommandoux S; Serra CA; Reisch A
    Langmuir; 2022 Jul; 38(26):7945-7955. PubMed ID: 35731957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic technologies for nanoparticle formation.
    Tian F; Cai L; Liu C; Sun J
    Lab Chip; 2022 Feb; 22(3):512-529. PubMed ID: 35048096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods.
    Agha A; Waheed W; Stiharu I; Nerguizian V; Destgeer G; Abu-Nada E; Alazzam A
    Discov Nano; 2023 Feb; 18(1):18. PubMed ID: 36800044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Scalable Microfluidic Platform for Nanoparticle Formulation: For Exploratory- and Industrial-Level Scales.
    Seder I; Zheng T; Zhang J; Rojas CC; Helalat SH; Téllez RC; Sun Y
    Nano Lett; 2024 May; 24(17):5132-5138. PubMed ID: 38588326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing.
    Valencia PM; Basto PA; Zhang L; Rhee M; Langer R; Farokhzad OC; Karnik R
    ACS Nano; 2010 Mar; 4(3):1671-9. PubMed ID: 20166699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters.
    Feng Q; Zhang L; Liu C; Li X; Hu G; Sun J; Jiang X
    Biomicrofluidics; 2015 Sep; 9(5):052604. PubMed ID: 26180574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles.
    Huang Y; Moini Jazani A; Howell EP; Oh JK; Moffitt MG
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):177-190. PubMed ID: 31820915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology.
    Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L
    PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Directed Synthesis of Alginate Nanogels with Tunable Pore Size for Efficient Protein Delivery.
    Bazban-Shotorbani S; Dashtimoghadam E; Karkhaneh A; Hasani-Sadrabadi MM; Jacob KI
    Langmuir; 2016 May; 32(19):4996-5003. PubMed ID: 26938744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices.
    Toudeshkchouei MG; Tavakoli A; Mohammadghasemi H; Karimi A; Ai J; Rabiee M; Rabiee N
    Future Med Chem; 2022 Nov; 14(21):1561-1581. PubMed ID: 36300415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Nanoparticles for Drug Delivery.
    Liu Y; Yang G; Hui Y; Ranaweera S; Zhao CX
    Small; 2022 Sep; 18(36):e2106580. PubMed ID: 35396770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-assisted preparation of PLGA nanoparticles loaded with insulin: a comparison with double emulsion solvent evaporation method.
    Kouhjani M; Jaafari MR; Kamali H; Abbasi A; Tafaghodi M; Mousavi Shaegh SA
    J Biomater Sci Polym Ed; 2024 Feb; 35(3):306-329. PubMed ID: 38100556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General Reagent Free Route to pH Responsive Polyacryloyl Hydrazide Capped Metal Nanogels for Synergistic Anticancer Therapeutics.
    Ujjwal RR; Purohit MP; Patnaik S; Ojha U
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11497-507. PubMed ID: 25961335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Fabrication of a Microfluidic Chip for Particle Size-Exclusion and Enrichment.
    Yang L; Ye T; Zhao X; Hu T; Wei Y
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation.
    Ashfaq A; Clochard MC; Coqueret X; Dispenza C; Driscoll MS; Ulański P; Al-Sheikhly M
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33266261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic formulation of nanoparticles for biomedical applications.
    Shepherd SJ; Issadore D; Mitchell MJ
    Biomaterials; 2021 Jul; 274():120826. PubMed ID: 33965797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric Nanoparticles Controlled by On-Chip Self-Assembly Enhance Cancer Treatment Effectiveness.
    Jung S; Lee J; Lim J; Suh J; Kim T; Ahn J; Kim WJ; Kim Y
    Adv Healthc Mater; 2020 Nov; 9(22):e2001633. PubMed ID: 33073526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.