These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38590347)

  • 21. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic mixing system for precise PLGA-PEG nanoparticles size control.
    Gimondi S; Guimarães CF; Vieira SF; Gonçalves VMF; Tiritan ME; Reis RL; Ferreira H; Neves NM
    Nanomedicine; 2022 Feb; 40():102482. PubMed ID: 34748958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and Characterization of Hydrogel Droplets Containing Magnetic Nano Particles, in a Microfluidic Flow-Focusing Chip.
    Moharramzadeh F; Seyyed Ebrahimi SA; Zarghami V; Lalegani Z; Hamawandi B
    Gels; 2023 Jun; 9(6):. PubMed ID: 37367170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Making the invisible visible: a microfluidic chip using a low refractive index polymer.
    Hanada Y; Ogawa T; Koike K; Sugioka K
    Lab Chip; 2016 Jul; 16(13):2481-6. PubMed ID: 27265196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of PLGA nanoparticles for sustained release of hydroxyl-FK866 by microfluidics.
    Bai X; Tang S; Butterworth S; Tirella A
    Biomater Adv; 2023 Nov; 154():213649. PubMed ID: 37820459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery.
    Siavashy S; Soltani M; Ghorbani-Bidkorbeh F; Fallah N; Farnam G; Mortazavi SA; Shirazi FH; Tehrani MHH; Hamedi MH
    Carbohydr Polym; 2021 Aug; 265():118027. PubMed ID: 33966822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements.
    Kirby BJ; Reichmuth DS; Renzi RF; Shepodd TJ; Wiedenman BJ
    Lab Chip; 2005 Feb; 5(2):184-90. PubMed ID: 15672133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of Purification Process on the Function of Synthetic Polymer Nanoparticles.
    Yasuno G; Koide H; Oku N; Asai T
    Chem Pharm Bull (Tokyo); 2021; 69(8):773-780. PubMed ID: 34334521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and Nanoprecipitation of HEMA-CL
    Gatti S; Agostini A; Ferrari R; Moscatelli D
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A single microfluidic chip with dual surface properties for protein drug delivery.
    Bokharaei M; Saatchi K; Häfeli UO
    Int J Pharm; 2017 Apr; 521(1-2):84-91. PubMed ID: 28213275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of a polymer surface with a gradient of pore size using a microfluidic chip.
    Kreppenhofer K; Li J; Segura R; Popp L; Rossi M; Tzvetkova P; Luy B; Kähler CJ; Guber AE; Levkin PA
    Langmuir; 2013 Mar; 29(11):3797-804. PubMed ID: 23427850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic-assisted nanoprecipitation of (PEGylated) poly (d,l-lactic acid-co-caprolactone): Effect of macromolecular and microfluidic parameters on particle size and paclitaxel encapsulation.
    Lallana E; Donno R; Magrì D; Barker K; Nazir Z; Treacher K; Lawrence MJ; Ashford M; Tirelli N
    Int J Pharm; 2018 Sep; 548(1):530-539. PubMed ID: 30009983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of Nanoparticle Adsorption on Polydimethylsiloxane-Based Microchannels.
    Hirama H; Otahara R; Kano S; Hayase M; Mekaru H
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33799754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic Manufacturing of SN-38-Loaded Polymer Nanoparticles with Shear Processing Control of Drug Delivery Properties.
    Cao Y; Silverman L; Lu C; Hof R; Wulff JE; Moffitt MG
    Mol Pharm; 2019 Jan; 16(1):96-107. PubMed ID: 30477300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-Step Production Using a Microfluidic Device of Highly Biocompatible Size-Controlled Noncationic Exosome-like Nanoparticles for RNA Delivery.
    Kimura N; Maeki M; Ishida A; Tani H; Tokeshi M
    ACS Appl Bio Mater; 2021 Feb; 4(2):1783-1793. PubMed ID: 35014524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Active microfluidic reactor-assisted controlled synthesis of nanoparticles and related potential biomedical applications.
    Kamat V; Dey P; Bodas D; Kaushik A; Boymelgreen A; Bhansali S
    J Mater Chem B; 2023 Jun; 11(25):5650-5667. PubMed ID: 37221948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functionalnanoparticles.
    Zhang L; Beatty A; Lu L; Abdalrahman A; Makris TM; Wang G; Wang Q
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110768. PubMed ID: 32279782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.