BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38591141)

  • 1. Implantable Neural Microelectrodes: How to Reduce Immune Response.
    Xiang Y; Zhao Y; Cheng T; Sun S; Wang J; Pei R
    ACS Biomater Sci Eng; 2024 May; 10(5):2762-2783. PubMed ID: 38591141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
    Golabchi A; Woeppel KM; Li X; Lagenaur CF; Cui XT
    Biosens Bioelectron; 2020 May; 155():112096. PubMed ID: 32090868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Development of Neural Microelectrodes with Dual-Mode Detection.
    Xu M; Zhao Y; Xu G; Zhang Y; Sun S; Sun Y; Wang J; Pei R
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural tissue-microelectrode interaction: Brain micromotion, electrical impedance, and flexible microelectrode insertion.
    Sharafkhani N; Kouzani AZ; Adams SD; Long JM; Lissorgues G; Rousseau L; Orwa JO
    J Neurosci Methods; 2022 Jan; 365():109388. PubMed ID: 34678387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.
    Abidian MR; Martin DC
    Biomaterials; 2008 Mar; 29(9):1273-83. PubMed ID: 18093644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice.
    Chen K; Forrest AM; Burgos GG; Kozai TDY
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38788704
    [No Abstract]   [Full Text] [Related]  

  • 10. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Penetrating Microelectrodes for Brain Electrophysiology.
    Erofeev A; Antifeev I; Bolshakova A; Bezprozvanny I; Vlasova O
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thinking Small: Progress on Microscale Neurostimulation Technology.
    Pancrazio JJ; Deku F; Ghazavi A; Stiller AM; Rihani R; Frewin CL; Varner VD; Gardner TJ; Cogan SF
    Neuromodulation; 2017 Dec; 20(8):745-752. PubMed ID: 29076214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation.
    Lee JH; Kim H; Kim JH; Lee SH
    Lab Chip; 2016 Mar; 16(6):959-76. PubMed ID: 26891410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable microscale neural interfaces.
    Cheung KC
    Biomed Microdevices; 2007 Dec; 9(6):923-38. PubMed ID: 17252207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proof of Concept for Sustainable Manufacturing of Neural Electrode Array for In Vivo Recording.
    Li SY; Tseng HY; Chen BW; Lo YC; Shao HH; Wu YT; Li SJ; Chang CW; Liu TC; Hsieh FY; Yang Y; Lai YB; Chen PC; Chen YY
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ultra-thin, minimally invasive surface electrode array NeuroWeb for probing neural activity.
    Lee JM; Pyo YW; Kim YJ; Hong JH; Jo Y; Choi W; Lin D; Park HG
    Nat Commun; 2023 Nov; 14(1):7088. PubMed ID: 37925553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing.
    Vajrala VS; Elkhoury K; Pautot S; Bergaud C; Maziz A
    Biosens Bioelectron; 2023 May; 227():115182. PubMed ID: 36870146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications.
    Jorfi M; Skousen JL; Weder C; Capadona JR
    J Neural Eng; 2015 Feb; 12(1):011001. PubMed ID: 25460808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.