These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38591171)
41. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Rai PK Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926 [TBL] [Abstract][Full Text] [Related]
42. Chromium removal efficiency of plant, microbe and media in experimental VSSF constructed wetlands under monocropped and co-cropped conditions. Kumar P; Kaur R; Celestin D; Kumar P Environ Sci Pollut Res Int; 2020 Jan; 27(2):2071-2086. PubMed ID: 31773522 [TBL] [Abstract][Full Text] [Related]
43. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal. Pérez MM; Hernández JM; Bossens J; Jiménez T; Rosa E; Tack F Water Sci Technol; 2014; 70(1):76-81. PubMed ID: 25026582 [TBL] [Abstract][Full Text] [Related]
44. Treatment of municipal wastewater using horizontal flow constructed wetlands in Egypt. Abou-Elela SI; Golinelli G; Saad El-Tabl A; Hellal MS Water Sci Technol; 2014; 69(1):38-47. PubMed ID: 24434966 [TBL] [Abstract][Full Text] [Related]
45. Effect of climatic conditions, season and wastewater quality on contaminant removal efficiency of two experimental constructed wetlands in different regions of Spain. Garfí M; Pedescoll A; Bécares E; Hijosa-Valsero M; Sidrach-Cardona R; García J Sci Total Environ; 2012 Oct; 437():61-7. PubMed ID: 22910037 [TBL] [Abstract][Full Text] [Related]
46. Use of broken brick to enhance the removal of nutrients in subsurface flow constructed wetlands receiving hospital wastewater. Dires S; Birhanu T; Ambelu A Water Sci Technol; 2019 Jan; 79(1):156-164. PubMed ID: 30816872 [TBL] [Abstract][Full Text] [Related]
47. Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling. Saeed T; Miah MJ; Khan T Environ Sci Pollut Res Int; 2021 Jun; 28(24):30908-30928. PubMed ID: 33594561 [TBL] [Abstract][Full Text] [Related]
48. Treatment of artificial wastewater containing two azo textile dyes by vertical-flow constructed wetlands. Hussein A; Scholz M Environ Sci Pollut Res Int; 2018 Mar; 25(7):6870-6889. PubMed ID: 29270896 [TBL] [Abstract][Full Text] [Related]
49. Selection of wild macrophytes for use in constructed wetlands for phytoremediation of contaminant mixtures. Guittonny-Philippe A; Petit ME; Masotti V; Monnier Y; Malleret L; Coulomb B; Combroux I; Baumberger T; Viglione J; Laffont-Schwob I J Environ Manage; 2015 Jan; 147():108-23. PubMed ID: 25262393 [TBL] [Abstract][Full Text] [Related]
50. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater. Xu M; Liu W; Li C; Xiao C; Ding L; Xu K; Geng J; Ren H Environ Sci Pollut Res Int; 2016 Jun; 23(11):10990-11001. PubMed ID: 26903125 [TBL] [Abstract][Full Text] [Related]
51. Pollutant removal within hybrid constructed wetland systems in tropical regions. Yeh TY; Wu CH Water Sci Technol; 2009; 59(2):233-40. PubMed ID: 19182332 [TBL] [Abstract][Full Text] [Related]
52. Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia. Alquwaizany AS; Hussain G; Al-Zarah AI Environ Sci Pollut Res Int; 2022 Jun; 29(26):39838-39846. PubMed ID: 35112245 [TBL] [Abstract][Full Text] [Related]
53. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Türker OC; Böcük H; Yakar A J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796 [TBL] [Abstract][Full Text] [Related]
54. Performance of different substrates in constructed wetlands planted with E. crassipes treating low-strength sewage under subtropical conditions. Lima MX; Carvalho KQ; Passig FH; Borges AC; Filippe TC; Azevedo JCR; Nagalli A Sci Total Environ; 2018 Jul; 630():1365-1373. PubMed ID: 29554756 [TBL] [Abstract][Full Text] [Related]
55. Hydraulic characterization and removal of metals and nutrients in an aerated horizontal subsurface flow "racetrack" wetland treating primary-treated oil industry effluent. Mozaffari MH; Shafiepour E; Mirbagheri SA; Rakhshandehroo G; Wallace S; Stefanakis AI Water Res; 2021 Jul; 200():117220. PubMed ID: 34038821 [TBL] [Abstract][Full Text] [Related]
56. Heavy metals removal from industrial wastewater of Biskra (Algeria) by Arundo donax and Phragmites australis. Badache S; Seghairi N Environ Monit Assess; 2024 Jul; 196(8):703. PubMed ID: 38967833 [TBL] [Abstract][Full Text] [Related]
57. Comparison of Iris pseudacorus wetland systems with unplanted systems on pollutant removal and microbial community under nanosilver exposure. Huang J; Cao C; Yan C; Guan W; Liu J Sci Total Environ; 2018 May; 624():1336-1347. PubMed ID: 29929246 [TBL] [Abstract][Full Text] [Related]
58. Organic media-based two-stage traditional and electrode-integrated tidal flow wetlands to treat landfill leachate: Influence of aeration strategy and plants. Saeed T; Zaman T; Miah MJ; Yadav AK; Majed N J Environ Manage; 2023 Mar; 330():117253. PubMed ID: 36621313 [TBL] [Abstract][Full Text] [Related]
59. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy. Mietto A; Borin M Environ Technol; 2013; 34(9-12):1085-95. PubMed ID: 24191440 [TBL] [Abstract][Full Text] [Related]
60. Enhanced removal of nutrients and heavy metals from domestic-industrial wastewater in an academic campus of Hanoi using modified hybrid constructed wetlands. Huong M; Costa DT; Van Hoi B Water Sci Technol; 2020 Nov; 82(10):1995-2006. PubMed ID: 33263578 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]