These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38591418)

  • 41. Heating Conditions Influence on Solidification of Inconel 625-WC System for Additive Manufacturing.
    Huebner J; Rutkowski P; Dębowska A; Kata D
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32629905
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Heat Treatments for Minimization of Residual Stresses and Maximization of Tensile Strengths of Scalmalloy
    Boillat-Newport R; Isanaka SP; Kelley J; Liou F
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541487
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of Finite Element, Phase-field, and CALPHAD-based Methods to Additive Manufacturing of Ni-based Superalloys.
    Keller T; Lindwall G; Ghosh S; Ma L; Lane BM; Zhang F; Kattner UR; Lass EA; Heigel JC; Idell Y; Williams ME; Allen AJ; Guyer JE; Levine LE
    Acta Mater; 2017 Oct; 139():244-253. PubMed ID: 29230094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Laser Remelting on Cladding Layer of Inconel 718 Superalloy Formed by Laser Metal Deposition.
    Xin B; Ren J; Wang X; Zhu L; Gong Y
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33147817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laser Rescanning for Enhancing Mechanical Properties of Laser-Directed Energy-Deposited High-Manganese Steels.
    Park YK; Nam HJ; Park YH; Lee W
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of Initial Temperature on the Microstructure and Properties of Stellite-6/Inconel 718 Functional Gradient Materials Formed by Laser Metal Deposition.
    Yao J; Xin B; Gong Y; Cheng G
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Part geometry and conduction-based laser power control for powder bed fusion additive manufacturing.
    Yeung H; Lane B; Fox J
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 34141600
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conventional Meso-Scale and Time-Efficient Sub-Track-Scale Thermomechanical Model for Directed Energy Deposition.
    Nain V; Engel T; Carin M; Boisselier D
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744152
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laser spot size and scaling laws for laser beam additive manufacturing.
    Weaver JS; Heigel JC; Lane BM
    J Mater Process Technol; 2022 Jan; 73():. PubMed ID: 36733901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microstructures and Mechanical Properties of Hybrid, Additively Manufactured Ti
    Hemes S; Meiners F; Sizova I; Hama-Saleh R; Röhrens D; Weisheit A; Häfner CL; Bambach M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of Melt Pool Characteristics and Process Parameters Using a Coaxial Monitoring System during Directed Energy Deposition in Additive Manufacturing.
    Kledwig C; Perfahl H; Reisacher M; Brückner F; Bliedtner J; Leyens C
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput, in situ imaging of multi-layer powder-blown directed energy deposition with angled nozzle.
    Webster S; Giovannini M; Shi Y; Martinez-Prieto N; Fezzaa K; Sun T; Ehmann K; Cao J
    Rev Sci Instrum; 2022 Feb; 93(2):023701. PubMed ID: 35232143
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Emissions and Exposures Associated with the Use of an Inconel Powder during Directed Energy Deposition Additive Manufacturing.
    van Ree M; du Preez S; du Plessis JL
    Int J Environ Res Public Health; 2023 Jun; 20(13):. PubMed ID: 37444054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Additive Manufacturing of Dense Ti6Al4V Layer via Picosecond Pulse Laser.
    Zhu X; Yin T; Hu Y; Li S; Wu D; Xia Z
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614663
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Directed energy deposition of 18NiM300 steel: effect of process and post processing conditions on microstructure and properties.
    Felicioni S; Aversa A; Librera E; Bondioli F; Fino P
    Sci Technol Adv Mater; 2024; 25(1):2346071. PubMed ID: 38774496
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigating the Impact of Substrate Preheating on the Thermal Flow and Microstructure of Laser Cladding of Nickel-Based Superalloy.
    Jin Z; Kong X; Ma L
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255567
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microstructure and Properties of Inconel 625 Fabricated Using Two Types of Laser Metal Deposition Methods.
    Dutkiewicz J; Rogal Ł; Kalita D; Berent K; Antoszewski B; Danielewski H; Węglowski MS; Łazińska M; Durejko T; Czujko T
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33182439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach.
    Ansari Dezfoli AR; Lo YL; Raza MM
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regional Control and Optimization of Heat Input during CMT by Wire Arc Additive Manufacturing: Modeling and Microstructure Effects.
    Chen F; Yang Y; Feng H
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33668308
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Production of Single Tracks of Ti-6Al-4V by Directed Energy Deposition to Determine the Layer Thickness for Multilayer Deposition.
    Saboori A; Tusacciu S; Busatto M; Lai M; Biamino S; Fino P; Lombardi M
    J Vis Exp; 2018 Mar; (133):. PubMed ID: 29608163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.