These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38591475)

  • 1. Investigation on Creep Deformation and Age Strengthening Behavior of 304 Stainless Steel under High Stress Levels.
    Zhan L; Xie H; Yang Y; Zhao S; Chang Z; Xia Y; Zheng Z; Zhou Y
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel.
    Dong H; Li ZC; Somani MC; Misra RDK
    J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the Low Plastic Behavior of Expansion Deformation of Austenitic Stainless Steel.
    Wan C; Wu W; Zhang X; Zhang L; Song K
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205.
    Li S; Jiang W; Xie X; Dong Z
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel.
    Hu CY; Somani MC; Misra RDK; Yang CG
    J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.
    Jinlong L; Tongxiang L; Chen W; Limin D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():558-63. PubMed ID: 26952459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate effects on transformation kinetics in a metastable austenitic stainless steel.
    Alturk R; Luecke WE; Mates S; Araujo A; Raghavan KS; Abu-Farha F
    Procedia Eng; 2017; 207():. PubMed ID: 33029261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Small Specimen Test Technique to Evaluate Creep Behavior of Austenitic Stainless Steel.
    Yu B; Han W; Tong Z; Geng D; Wang C; Zhao Y; Yang W
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31404993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel.
    Xiong Y; Yue Y; He T; Lu Y; Ren F; Cao W
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology improvement of bulk compressive creep test: Deformation measurement and loading rate.
    He Y; Chen C; Yan Y; Swain MV; Li Q; Jian Y; Zhao K; Wang X
    Dent Mater; 2022 Oct; 38(10):1575-1586. PubMed ID: 35934560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Cu on the Microstructure and Mechanical Properties of a Low-Carbon Martensitic Stainless Steel.
    Ma J; Song Y; Jiang H; Rong L
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Numerical Study of Slip System Evolution in Ultra-Thin Stainless Steel Foil.
    Ren Z; Fan W; Hou J; Wang T
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31195601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ transmission electron microscopy observation of dislocation motion in 9Cr steel at elevated temperatures: influence of shear stress on dislocation behavior.
    Yamada S; Sakai T
    Microscopy (Oxf); 2014 Dec; 63(6):449-61. PubMed ID: 25298228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the Hot Deformation Behavior of Stainless Steel AISI 321.
    Radionova LV; Perevozchikov DV; Makoveckii AN; Eremin VN; Akhmedyanov AM; Rushchits SV
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Annealing Temperature on Mechanical Properties and Work Hardening of Nickel-Saving Stainless Steel.
    Pei W; Yang S; Cao K; Zhao A
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile Behavior, Constitutive Model, and Deformation Mechanisms of MarBN Steel at Various Temperatures and Strain Rates.
    Cai Y; Wang Q; Liu M; Jiang Y; Zou T; Wang Y; Li Q; Pei Y; Zhang H; Liu Y; Wang Q
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel.
    Astafurova E; Fortuna A; Melnikov E; Astafurov S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation Behavior and Constitutive Model of 34CrNi3Mo during Thermo-Mechanical Deformation Process.
    Jia XD; Zhou Y; Wang YN
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35955154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Process Parameters on Microstructure and Mechanical Properties of Stainless Steel/Carbon Steel Clad Rebar.
    Feng YY; Yu H; Luo ZA; Misra RDK; Xie GM
    Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31491984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.