BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38591484)

  • 1. Proteasome-dependent degradation of histone H1 subtypes is mediated by its C-terminal domain.
    García-Gomis D; López J; Calderón A; Andrés M; Ponte I; Roque A
    Protein Sci; 2024 May; 33(5):e4970. PubMed ID: 38591484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 20S proteasome activator PA28γ controls the compaction of chromatin.
    Fesquet D; Llères D; Grimaud C; Viganò C; Méchali F; Boulon S; Coux O; Bonne-Andrea C; Baldin V
    J Cell Sci; 2021 Feb; 134(3):. PubMed ID: 33526472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational modifications of the intrinsically disordered terminal domains of histone H1: effects on secondary structure and chromatin dynamics.
    Roque A; Ponte I; Suau P
    Chromosoma; 2017 Feb; 126(1):83-91. PubMed ID: 27098855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PIP30/FAM192A is a novel regulator of the nuclear proteasome activator PA28γ.
    Jonik-Nowak B; Menneteau T; Fesquet D; Baldin V; Bonne-Andrea C; Méchali F; Fabre B; Boisguerin P; de Rossi S; Henriquet C; Pugnière M; Ducoux-Petit M; Burlet-Schiltz O; Lamond AI; Fort P; Boulon S; Bousquet MP; Coux O
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):E6477-E6486. PubMed ID: 29934401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PA28γ: New Insights on an Ancient Proteasome Activator.
    Cascio P
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage-induced chromatome dynamics link Ubiquitin ligase and proteasome recruitment to histone loss and efficient DNA repair.
    Challa K; Schmid CD; Kitagawa S; Cheblal A; Iesmantavicius V; Seeber A; Amitai A; Seebacher J; Hauer MH; Shimada K; Gasser SM
    Mol Cell; 2021 Feb; 81(4):811-829.e6. PubMed ID: 33529595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone degradation by the proteasome regulates chromatin and cellular plasticity.
    Shmueli MD; Sheban D; Eisenberg-Lerner A; Merbl Y
    FEBS J; 2022 Jun; 289(12):3304-3316. PubMed ID: 33914417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF.
    Clausell J; Happel N; Hale TK; Doenecke D; Beato M
    PLoS One; 2009 Oct; 4(10):e0007243. PubMed ID: 19794910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PA28γ-20S proteasome is a proteolytic complex committed to degrade unfolded proteins.
    Frayssinhes JA; Cerruti F; Laulin J; Cattaneo A; Bachi A; Apcher S; Coux O; Cascio P
    Cell Mol Life Sci; 2021 Dec; 79(1):45. PubMed ID: 34913092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards understanding the Regulation of Histone H1 Somatic Subtypes with OMICs.
    Ponte I; Andrés M; Jordan A; Roque A
    J Mol Biol; 2021 Jan; 433(2):166734. PubMed ID: 33279581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined treatment of human multiple myeloma cells with bortezomib and doxorubicin alters the interactome of 20S proteasomes.
    Mittenberg AG; Kuzyk VO; Shabelnikov SV; Gorbach DP; Shatrova AN; Fedorova OA; Barlev NA
    Cell Cycle; 2018; 17(14):1745-1756. PubMed ID: 30009671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. G1 phase-dependent nucleolar accumulation of human histone H1x.
    Stoldt S; Wenzel D; Schulze E; Doenecke D; Happel N
    Biol Cell; 2007 Oct; 99(10):541-52. PubMed ID: 17868027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain.
    Th'ng JP; Sung R; Ye M; Hendzel MJ
    J Biol Chem; 2005 Jul; 280(30):27809-14. PubMed ID: 15911621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone H1 and its isoforms: contribution to chromatin structure and function.
    Happel N; Doenecke D
    Gene; 2009 Feb; 431(1-2):1-12. PubMed ID: 19059319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Previously Unidentified Histone H1-Like Protein Is Involved in Cell Division and Ribosome Biosynthesis in Toxoplasma gondii.
    Severo V; Souza R; Vitorino F; Cunha J; Ávila A; Arrizabalaga G; Nardelli S
    mSphere; 2022 Dec; 7(6):e0040322. PubMed ID: 36468865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule study reveals Hmo1, not Hho1, promotes chromatin assembly in budding yeast.
    Wang M; Li J; Wang Y; Fu H; Qiu H; Li Y; Li M; Lu Y; Fu YV
    mBio; 2023 Aug; 14(4):e0099323. PubMed ID: 37432033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of DNA binding on the degradation of oxidized histones by the 20S proteasome.
    Ullrich O; Sitte N; Sommerburg O; Sandig V; Davies KJ; Grune T
    Arch Biochem Biophys; 1999 Feb; 362(2):211-6. PubMed ID: 9989929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1.
    Sridhar A; Orozco M; Collepardo-Guevara R
    Nucleic Acids Res; 2020 Jun; 48(10):5318-5331. PubMed ID: 32356891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating the 20S proteasome ubiquitin-independent degradation pathway.
    Ben-Nissan G; Sharon M
    Biomolecules; 2014 Sep; 4(3):862-84. PubMed ID: 25250704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.