These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38591542)

  • 1. Elastic Wave Propagation Control in Porous and Finitely Deformed Locally Resonant Nacre-like Metamaterials.
    De Maio U; Greco F; Nevone Blasi P; Pranno A; Sgambitterra G
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nacre-like block lattice metamaterials with targeted phononic band gap and mechanical properties.
    Bollineni RK; Sayed Ahmed M; Shahab S; Mirzaeifar R
    J Mech Behav Biomed Mater; 2024 Jun; 154():106511. PubMed ID: 38518512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of interfacial debonding on the stability of finitely strained periodic microstructured elastic composites.
    Greco F; Luciano R; Pranno A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230356. PubMed ID: 39069762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation-dependent micromechanical behavior of nacre: In situ TEM experiments and finite element simulations.
    Peng XL; Lee S; Wilmers J; Oh SH; Bargmann S
    Acta Biomater; 2022 Jul; 147():120-128. PubMed ID: 35609803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-reciprocal wave propagation in mechanically-modulated continuous elastic metamaterials.
    Goldsberry BM; Wallen SP; Haberman MR
    J Acoust Soc Am; 2019 Jul; 146(1):782. PubMed ID: 31370598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective property evaluation and analysis of three-dimensional periodic lattices and composites through Bloch-wave homogenization.
    Patil GU; Matlack KH
    J Acoust Soc Am; 2019 Mar; 145(3):1259. PubMed ID: 31067925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing buckling to design tunable locally resonant acoustic metamaterials.
    Wang P; Casadei F; Shan S; Weaver JC; Bertoldi K
    Phys Rev Lett; 2014 Jul; 113(1):014301. PubMed ID: 25032927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance.
    Silva PB; Leamy MJ; Geers MGD; Kouznetsova VG
    Phys Rev E; 2019 Jun; 99(6-1):063003. PubMed ID: 31330758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability.
    Beli D; Fabro AT; Ruzzene M; Arruda JRF
    Sci Rep; 2019 Apr; 9(1):5617. PubMed ID: 30948748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation.
    Nadkarni N; Daraio C; Kochmann DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023204. PubMed ID: 25215840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internally resonant wave energy exchange in weakly nonlinear lattices and metamaterials.
    Fronk MD; Leamy MJ
    Phys Rev E; 2019 Sep; 100(3-1):032213. PubMed ID: 31639984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Emergence of Sequential Buckling in Reconfigurable Hexagonal Networks Embedded into Soft Matrix.
    Galich PI; Sharipova A; Slesarenko S
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable wave coupling in periodically rotated Miura-ori tubes.
    Tomita S; Tachi T
    Philos Trans A Math Phys Eng Sci; 2024 Oct; 382(2283):20240006. PubMed ID: 39370787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial.
    Zega V; Silva PB; Geers MGD; Kouznetsova VG
    Sci Rep; 2020 Jul; 10(1):12041. PubMed ID: 32694580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials.
    Li J; Slesarenko V; Rudykh S
    Soft Matter; 2018 Aug; 14(30):6171-6180. PubMed ID: 30022182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of elastic topological states in soft materials.
    Li S; Zhao D; Niu H; Zhu X; Zang J
    Nat Commun; 2018 Apr; 9(1):1370. PubMed ID: 29636454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent behavior of media containing pre-strained nonlinear inclusions: Application to nonlinear acoustic metamaterials.
    Konarski SG; Haberman MR; Hamilton MF
    J Acoust Soc Am; 2018 Nov; 144(5):3022. PubMed ID: 30522290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired periodic panels optimized for acoustic insulation.
    Dal Poggetto VF; Pugno NM; Arruda JRF
    Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210389. PubMed ID: 36209809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectro-spatial analysis of elastic wave propagation in nonlinear elastic metamaterial systems with damping.
    Liu M; Zhou F
    Chaos; 2022 Nov; 32(11):113124. PubMed ID: 36456308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.