These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 38591550)
1. Influence of Different Undercut Depths of Clasp Fabricated by Selective Laser Melting on Retentive Force. Tomono K; Kato Y; Wadachi J; Tasaka A; Takemoto S; Yamashita S Eur J Prosthodont Restor Dent; 2024 Sep; 32(3):261-269. PubMed ID: 38591550 [TBL] [Abstract][Full Text] [Related]
2. [Finite element analyses of retention of removable partial denture circumferential clasps manufactured by selective laser melting]. Ma KN; Chen H; Shen YR; Zhou YS; Wang Y; Sun YC Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Feb; 54(1):105-112. PubMed ID: 35165476 [TBL] [Abstract][Full Text] [Related]
3. Retentive force and fitness accuracy of cobalt-chrome alloy clasps for removable partial denture fabricated with SLM technique. Zhang M; Gan N; Qian H; Jiao T J Prosthodont Res; 2022 Jul; 66(3):459-465. PubMed ID: 34615841 [TBL] [Abstract][Full Text] [Related]
4. Comparison of cast Ti-Ni alloy clasp retention with conventional removable partial denture clasps. Kim D; Park C; Yi Y; Cho L J Prosthet Dent; 2004 Apr; 91(4):374-82. PubMed ID: 15116040 [TBL] [Abstract][Full Text] [Related]
5. Fitness and retentive force of cobalt-chromium alloy clasps fabricated with repeated laser sintering and milling. Torii M; Nakata T; Takahashi K; Kawamura N; Shimpo H; Ohkubo C J Prosthodont Res; 2018 Jul; 62(3):342-346. PubMed ID: 29428170 [TBL] [Abstract][Full Text] [Related]
6. Feasibility study and material selection for powder-bed fusion process in printing of denture clasps. Ma K; Chen H; Shen Y; Guo Y; Li W; Wang Y; Zhang Y; Sun Y Comput Biol Med; 2023 May; 157():106772. PubMed ID: 36963354 [TBL] [Abstract][Full Text] [Related]
7. Titanium clasp fabricated by selective laser melting, CNC milling, and conventional casting: a comparative in vitro study. Tan FB; Song JL; Wang C; Fan YB; Dai HW J Prosthodont Res; 2019 Jan; 63(1):58-65. PubMed ID: 30309743 [TBL] [Abstract][Full Text] [Related]
8. Effect of arm design and chemical polishing on retentive force of cast titanium alloy clasps. Shimpo H J Prosthodont; 2008 Jun; 17(4):300-7. PubMed ID: 18205738 [TBL] [Abstract][Full Text] [Related]
10. In vitro study of optimal removable partial denture clasp design made from novel high-performance polyetherketoneketone. Peng PW; Chen MS; Peng TY; Huang PC; Nikawa H; Lee WF J Prosthodont Res; 2024 Jul; 68(3):466-473. PubMed ID: 38220161 [TBL] [Abstract][Full Text] [Related]
11. Change in the retentive force of Akers clasp for zirconia crown by repetitive insertion and removal test. Tanaka A; Miyake N; Hotta H; Takemoto S; Yoshinari M; Yamashita S J Prosthodont Res; 2019 Oct; 63(4):447-452. PubMed ID: 30904359 [TBL] [Abstract][Full Text] [Related]
12. Comparative study of circumferential clasp retention force for titanium and cobalt-chromium removable partial dentures. Rodrigues RC; Ribeiro RF; de Mattos Mda G; Bezzon OL J Prosthet Dent; 2002 Sep; 88(3):290-6. PubMed ID: 12426499 [TBL] [Abstract][Full Text] [Related]
13. The effect of build orientation on the microstructure and properties of selective laser melting Ti-6Al-4V for removable partial denture clasps. Xie W; Zheng M; Wang J; Li X J Prosthet Dent; 2020 Jan; 123(1):163-172. PubMed ID: 30982620 [TBL] [Abstract][Full Text] [Related]
14. Fitness accuracy and retentive forces of additive manufactured titanium clasp. Takahashi K; Torii M; Nakata T; Kawamura N; Shimpo H; Ohkubo C J Prosthodont Res; 2020 Oct; 64(4):468-477. PubMed ID: 32063534 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the retentive characteristics of cobalt-chromium and commercially pure titanium clasps using a novel method. Tse ET; Cheng LY; Luk HW; Chu FC; Chai J; Chow TW Int J Prosthodont; 2006; 19(4):371-2. PubMed ID: 16900820 [TBL] [Abstract][Full Text] [Related]
16. [A three-dimensional finite element analysis on relationship between abutment undercut and retentive arm width of cast cobalt-chromium three-arm clasp]. Wang SY; Zhang ZT; Bai BJ Zhonghua Kou Qiang Yi Xue Za Zhi; 2007 May; 42(5):276-9. PubMed ID: 17686278 [TBL] [Abstract][Full Text] [Related]
17. [Cyclic fatigue test of cobalt-chromium alloy cast clasps]. Xu MR; Cheng H; Zheng M; Li XR; Wu WQ; Chen D Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Jan; 45(1):36-8. PubMed ID: 20368039 [TBL] [Abstract][Full Text] [Related]
18. [Experimental study on the retentive force of cobalt-chromium alloy, pure titanium and vitallium cast clasps in the simulated 3-year clinical use]. Yan HX; Zhao YB; Qin LM; Zhu HT; Wu L Shanghai Kou Qiang Yi Xue; 2015 Dec; 24(6):696-701. PubMed ID: 27063121 [TBL] [Abstract][Full Text] [Related]
19. Retention and fatigue performance of modified polyetheretherketone clasps for removable prosthesis. Luo Y; Qiu L; Geng M; Zhang W J Mech Behav Biomed Mater; 2024 Jun; 154():106539. PubMed ID: 38598917 [TBL] [Abstract][Full Text] [Related]
20. An in vitro comparison of retentive force and deformation of acetal resin and cobalt-chromium clasps. Arda T; Arikan A J Prosthet Dent; 2005 Sep; 94(3):267-74. PubMed ID: 16126079 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]