These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 38591562)

  • 1. Supercapacitors: An Efficient Way for Energy Storage Application.
    Czagany M; Hompoth S; Keshri AK; Pandit N; Galambos I; Gacsi Z; Baumli P
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors.
    Cherusseri J; Sambath Kumar K; Choudhary N; Nagaiah N; Jung Y; Roy T; Thomas J
    Nanotechnology; 2019 May; 30(20):202001. PubMed ID: 30754027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Oxide and Hydroxide-Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices.
    Nguyen T; Montemor MF
    Adv Sci (Weinh); 2019 May; 6(9):1801797. PubMed ID: 31065518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors.
    Asghar A; Khan K; Hakami O; Alamier WM; Ali SK; Zelai T; Rashid MS; Tareen AK; Al-Harthi EA
    Front Chem; 2024; 12():1402563. PubMed ID: 38831913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review.
    Tundwal A; Kumar H; Binoj BJ; Sharma R; Kumar G; Kumari R; Dhayal A; Yadav A; Singh D; Kumar P
    RSC Adv; 2024 Mar; 14(14):9406-9439. PubMed ID: 38516158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Energy Density Supercapacitors: An Overview of Efficient Electrode Materials, Electrolytes, Design, and Fabrication.
    Pathak M; Bhatt D; Bhatt RC; Bohra BS; Tatrari G; Rana S; Arya MC; Sahoo NG
    Chem Rec; 2024 Jan; 24(1):e202300236. PubMed ID: 37991268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Framework structured Ce
    Singh M; Mondal R; Singh P; Sharma N
    Phys Chem Chem Phys; 2023 Apr; 25(16):11429-11441. PubMed ID: 37022088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives.
    Kumar N; Kim SB; Lee SY; Park SJ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials Design and System Construction for Conventional and New-Concept Supercapacitors.
    Wu Z; Li L; Yan JM; Zhang XB
    Adv Sci (Weinh); 2017 Jun; 4(6):1600382. PubMed ID: 28638780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments.
    Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured Titanium Nitride and Its Composites as High-Performance Supercapacitor Electrode Material.
    Parveen N; Ansari MO; Ansari SA; Kumar P
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress in supercapacitors: roles of two dimensional nanotubular materials.
    Panda PK; Grigoriev A; Mishra YK; Ahuja R
    Nanoscale Adv; 2020 Jan; 2(1):70-108. PubMed ID: 36133979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Supercapacitors as the Next Generation Energy Storage Device: Emergence, Opportunity, and Challenges.
    Biswas S; Chowdhury A
    Chemphyschem; 2023 Feb; 24(3):e202200567. PubMed ID: 36215082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
    El-Kady MF; Ihns M; Li M; Hwang JY; Mousavi MF; Chaney L; Lech AT; Kaner RB
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4233-8. PubMed ID: 25831542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Transition-metal Oxide Electrodes: Understanding the Role of Surface Engineering for High Energy Density Supercapacitors.
    Tomboc GM; Tesfaye Gadisa B; Jun M; Chaudhari NK; Kim H; Lee K
    Chem Asian J; 2020 Jun; 15(11):1628-1647. PubMed ID: 32301268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Progress in Carbonaceous and Redox-Active Nanoarchitectures for Hybrid Supercapacitors: Performance Evaluation, Challenges, and Future Prospects.
    Shah SS; Aziz MA; Yamani ZH
    Chem Rec; 2022 Jul; 22(7):e202200018. PubMed ID: 35426239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.