These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38591723)

  • 81. Superatom-in-Superatom Nanoclusters: Synthesis, Structure, and Photoluminescence.
    Yi H; Song S; Han SM; Lee J; Kim W; Sim E; Lee D
    Angew Chem Int Ed Engl; 2023 Aug; 62(33):e202302591. PubMed ID: 37117156
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter.
    Zhu C; Xin J; Li J; Li H; Kang X; Pei Y; Zhu M
    Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202205947. PubMed ID: 35596616
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Arylgold nanoclusters: Phenyl-stabilized Au
    Si WD; Zhang C; Zhou M; Wang Z; Feng L; Tung CH; Sun D
    Sci Adv; 2024 Feb; 10(7):eadm6928. PubMed ID: 38354237
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Chiral Superatomic Nanoclusters Ag
    Liu WD; Wang JQ; Yuan SF; Chen X; Wang QM
    Angew Chem Int Ed Engl; 2021 May; 60(20):11430-11435. PubMed ID: 33629455
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Shedding light on vacancy-doped copper chalcogenides: shape-controlled synthesis, optical properties, and modeling of copper telluride nanocrystals with near-infrared plasmon resonances.
    Kriegel I; Rodríguez-Fernández J; Wisnet A; Zhang H; Waurisch C; Eychmüller A; Dubavik A; Govorov AO; Feldmann J
    ACS Nano; 2013 May; 7(5):4367-77. PubMed ID: 23570329
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters.
    Tofanelli MA; Ackerson CJ
    J Am Chem Soc; 2012 Oct; 134(41):16937-40. PubMed ID: 23013617
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Superatomic Ligand-Field Splitting in Ligated Gold Nanoclusters.
    Zhang JX; Sheong FK; Lin Z
    Inorg Chem; 2020 Jul; 59(13):8864-8870. PubMed ID: 32538629
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Observable but Not Isolable: The RhAu
    Anderson ID; Riskowski RA; Ackerson CJ
    Small; 2021 Jul; 17(27):e2004078. PubMed ID: 33174675
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Assembly-Induced Emission of Copper Nanoclusters: Revealing the Sensing Mechanism for Detection of Volatile Basic Nitrogen in Seafood Freshness On-Site Monitoring.
    Zhou C; Sun DW; Ma J; Qin A; Tang BZ; Lin XR; Cao SL
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6533-6547. PubMed ID: 38261539
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Eight-Electron Copper Nanoclusters for Photothermal Conversion.
    Sun X; Yan B; Gong X; Xu Q; Guo Q; Shen H
    Chemistry; 2024 May; 30(28):e202400527. PubMed ID: 38470123
    [TBL] [Abstract][Full Text] [Related]  

  • 91. One-pot synthesis of enhanced fluorescent copper nanoclusters encapsulated in metal-organic frameworks.
    Han B; Hu X; Yu M; Peng T; Li Y; He G
    RSC Adv; 2018 Jun; 8(40):22748-22754. PubMed ID: 35539698
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Thiacalix[4]arene-Protected Silver Nanoclusters Encapsulating Different Two-Electron Superatom Oligomers.
    Wang Z; Zhao H; Li YZ; Zhang C; Gupta RK; Tung CH; Sun D
    Nano Lett; 2024 Jan; 24(1):458-465. PubMed ID: 38148139
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.
    Kriegel I; Jiang C; Rodríguez-Fernández J; Schaller RD; Talapin DV; da Como E; Feldmann J
    J Am Chem Soc; 2012 Jan; 134(3):1583-90. PubMed ID: 22148506
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au
    Wei J; Kahlal S; Halet JF; Saillard JY; Muñoz-Castro A
    J Phys Chem A; 2022 Feb; 126(4):536-545. PubMed ID: 35044183
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Photo induced chemical modification of surface ligands for aggregation and luminescence modulation of copper nanoclusters in the presence of oxygen.
    Basu S; Nawaj MW; Gayen C; Paul A
    Phys Chem Chem Phys; 2019 Oct; 21(39):21776-21781. PubMed ID: 31552924
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evidence for the Superatom-Superatom Bonding from Bond Energies.
    Zheng Q; Xu C; Wu X; Cheng L
    ACS Omega; 2018 Oct; 3(10):14423-14430. PubMed ID: 31458128
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Density Functional Theory Study of Cu
    Bahota AS; Singh KK; Yadav A; Chaudhary R; Agrawal N; Tandon P
    ACS Omega; 2024 Jan; 9(1):276-282. PubMed ID: 38222619
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ligand Engineering toward the Trade-Off between Stability and Activity in Cluster Catalysis.
    Guan ZJ; He RL; Yuan SF; Li JJ; Hu F; Liu CY; Wang QM
    Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202116965. PubMed ID: 35014157
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Formation of a superatom monolayer using gas-phase-synthesized Ta@Si16 nanocluster ions.
    Nakaya M; Iwasa T; Tsunoyama H; Eguchi T; Nakajima A
    Nanoscale; 2014 Dec; 6(24):14702-7. PubMed ID: 25286979
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Surface Ligand Influences the Cu Nanoclusters as a Dual Sensing Optical Probe for Localized pH Environment and Fluoride Ion.
    Busi KB; Das S; Palanivel M; Ghosh KK; Gulyás B; Padmanabhan P; Chakrabortty S
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.