These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38591912)

  • 1. Nanoscopic Interfacial Hydrogel Viscoelasticity Revealed from Comparison of Macroscopic and Microscopic Rheology.
    Schmidt RF; Kiefer H; Dalgliesh R; Gradzielski M; Netz RR
    Nano Lett; 2024 Apr; 24(16):4758-65. PubMed ID: 38591912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probe size effects on the microrheology of associating polymer solutions.
    Lu Q; Solomon MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061504. PubMed ID: 12513289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro and macrorheology at fluid-fluid interfaces.
    Samaniuk JR; Vermant J
    Soft Matter; 2014 Sep; 10(36):7023-33. PubMed ID: 24935487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of the interfacial stabilising layer on the macroscopic flow properties of suspensions dispersed in non-adsorbing polymer solution.
    Faers MA
    Adv Colloid Interface Sci; 2003 Dec; 106():23-54. PubMed ID: 14672841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology.
    Kamkar M; Bazazi P; Kannan A; Suja VC; Hejazi SH; Fuller GG; Sundararaj U
    J Colloid Interface Sci; 2020 Sep; 576():252-263. PubMed ID: 32422449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Microrheology in Food Science.
    Yang N; Lv R; Jia J; Nishinari K; Fang Y
    Annu Rev Food Sci Technol; 2017 Feb; 8():493-521. PubMed ID: 28125345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelation of PEO-PLGA-PEO triblock copolymers induced by macroscopic phase separation.
    Park MJ; Char K
    Langmuir; 2004 Mar; 20(6):2456-65. PubMed ID: 15835710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and rheological properties of chitosan semi-interpenetrated networks.
    Payet L; Ponton A; Grossiord JL; Agnely F
    Eur Phys J E Soft Matter; 2010 Jun; 32(2):109-18. PubMed ID: 20526647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory and Relaxation Study of the Interfacial Rheology of Star Polymers with Low-Grafting-Density PEO Arms and Hydrophobic Poly(divinylbenzene) Cores.
    Olszewski M; Hu X; Lin TC; Matyjaszewski K; Lebedeva N; Taylor P
    Langmuir; 2023 Jun; 39(22):7741-7758. PubMed ID: 37216597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscopic Characterization of Stearic Acid Release from Bovine Serum Albumin Hydrogels.
    Sanaeifar N; Mäder K; Hinderberger D
    Macromol Biosci; 2020 Aug; 20(8):e2000126. PubMed ID: 32567224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What Caging Force Cells Feel in 3D Hydrogels: A Rheological Perspective.
    Ciccone G; Dobre O; Gibson GM; Rey JM; Gonzalez-Garcia C; Vassalli M; Salmeron-Sanchez M; Tassieri M
    Adv Healthc Mater; 2020 Sep; 9(17):e2000517. PubMed ID: 32696605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E-Beam Cross-Linking of Complex Hydrogels Formulation: The Influence of Poly(Ethylene Oxide) Concentration on the Hydrogel Properties.
    Demeter M; Călina I; Scărișoreanu A; Micutz M
    Gels; 2021 Dec; 8(1):. PubMed ID: 35049562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel.
    Aufderhorst-Roberts A; Cussons S; Brockwell DJ; Dougan L
    Soft Matter; 2023 May; 19(17):3167-3178. PubMed ID: 37067782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial behaviour of β-lactoglobulin aggregates at the oil-water interface studied using particle tracking and dilatational rheology.
    Yang N; Ye J; Li J; Hu B; Leheny RL; Nishinari K; Fang Y
    Soft Matter; 2021 Mar; 17(10):2973-2984. PubMed ID: 33595572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of interfacial viscoelasticity on the bulk linear viscoelastic moduli of globular protein solutions.
    Zhang Z; Barman S; Christopher GF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052306. PubMed ID: 25353799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macro- and Microrheological Properties of Mucus Surrogates in Comparison to Native Intestinal and Pulmonary Mucus.
    Huck BC; Hartwig O; Biehl A; Schwarzkopf K; Wagner C; Loretz B; Murgia X; Lehr CM
    Biomacromolecules; 2019 Sep; 20(9):3504-3512. PubMed ID: 31419118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perspective on the interfacial properties of nanoscopic liquid drops.
    Malijevský A; Jackson G
    J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity in nanocomposite hydrogels from poly(ethylene oxide) cross-linked with silicate nanoparticles.
    Schexnailder P; Loizou E; Porcar L; Butler P; Schmidt G
    Phys Chem Chem Phys; 2009 Apr; 11(15):2760-6. PubMed ID: 19421534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Techniques to characterize dynamics in biomaterials microenvironments: XPCS and microrheology of alginate/PEO-PPO-PEO hydrogels.
    Quah SP; Zhang Y; Fluerasu A; Yu X; Zheng B; Yin X; Liu W; Bhatia SR
    Soft Matter; 2021 Feb; 17(6):1685-1691. PubMed ID: 33367407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.