These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38591974)
1. Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models. Pan Z; Hu G; Zhu Z; Tan W; Han W; Zhou Z; Song W; Yu Y; Song L; Jin Z Radiology; 2024 Apr; 311(1):e232057. PubMed ID: 38591974 [TBL] [Abstract][Full Text] [Related]
2. Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT. Qi K; Wang K; Wang X; Zhang YD; Lin G; Zhang X; Liu H; Huang W; Wu J; Zhao K; Liu J; Li J; Zhang X AJR Am J Roentgenol; 2024 Jan; 222(1):e2329674. PubMed ID: 37493322 [No Abstract] [Full Text] [Related]
3. A nomogram for predicting invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodules: incorporating subjective CT signs and histogram parameters based on artificial intelligence. Gao R; Gao Y; Zhang J; Zhu C; Zhang Y; Yan C J Cancer Res Clin Oncol; 2023 Nov; 149(17):15323-15333. PubMed ID: 37624396 [TBL] [Abstract][Full Text] [Related]
4. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study. Wu G; Woodruff HC; Shen J; Refaee T; Sanduleanu S; Ibrahim A; Leijenaar RTH; Wang R; Xiong J; Bian J; Wu J; Lambin P Radiology; 2020 Nov; 297(2):451-458. PubMed ID: 32840472 [TBL] [Abstract][Full Text] [Related]
5. Radiomic signature based on CT imaging to distinguish invasive adenocarcinoma from minimally invasive adenocarcinoma in pure ground-glass nodules with pleural contact. Jiang Y; Che S; Ma S; Liu X; Guo Y; Liu A; Li G; Li Z Cancer Imaging; 2021 Jan; 21(1):1. PubMed ID: 33407884 [TBL] [Abstract][Full Text] [Related]
6. A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Gong J; Liu J; Hao W; Nie S; Zheng B; Wang S; Peng W Eur Radiol; 2020 Apr; 30(4):1847-1855. PubMed ID: 31811427 [TBL] [Abstract][Full Text] [Related]
7. Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas. Kim H; Goo JM; Lee KH; Kim YT; Park CM Radiology; 2020 Jul; 296(1):216-224. PubMed ID: 32396042 [TBL] [Abstract][Full Text] [Related]
8. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction. Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003 [TBL] [Abstract][Full Text] [Related]
9. Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images. Wang J; Chen X; Lu H; Zhang L; Pan J; Bao Y; Su J; Qian D Med Phys; 2020 Apr; 47(4):1738-1749. PubMed ID: 32020649 [TBL] [Abstract][Full Text] [Related]
10. Fusion of CT images and clinical variables based on deep learning for predicting invasiveness risk of stage I lung adenocarcinoma. Huang H; Zheng D; Chen H; Wang Y; Chen C; Xu L; Li G; Wang Y; He X; Li W Med Phys; 2022 Oct; 49(10):6384-6394. PubMed ID: 35938604 [TBL] [Abstract][Full Text] [Related]
11. Clinical Outcomes of Resected Pure Ground-Glass, Heterogeneous Ground-Glass, and Part-Solid Pulmonary Nodules. Sun JD; Sugarbaker E; Byrne SC; Gagné A; Leo R; Swanson SJ; Hammer MM AJR Am J Roentgenol; 2024 May; 222(5):e2330504. PubMed ID: 38323785 [No Abstract] [Full Text] [Related]
12. CT Characteristics for Predicting Invasiveness in Pulmonary Pure Ground-Glass Nodules. Chu ZG; Li WJ; Fu BJ; Lv FJ AJR Am J Roentgenol; 2020 Aug; 215(2):351-358. PubMed ID: 32348187 [No Abstract] [Full Text] [Related]
13. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules. Cai J; Liu H; Yuan H; Wu Y; Xu Q; Lv Y; Li J; Fu J; Ye J Clin Radiol; 2021 Feb; 76(2):143-151. PubMed ID: 33187676 [TBL] [Abstract][Full Text] [Related]
14. Predicting benign, preinvasive, and invasive lung nodules on computed tomography scans using machine learning. Ashraf SF; Yin K; Meng CX; Wang Q; Wang Q; Pu J; Dhupar R J Thorac Cardiovasc Surg; 2022 Apr; 163(4):1496-1505.e10. PubMed ID: 33726909 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Clinical-Radiomics Model for Precisely Predicting the Invasiveness of Lung Adenocarcinoma Manifesting as Pure Ground-Glass Nodule. Song L; Xing T; Zhu Z; Han W; Fan G; Li J; Du H; Song W; Jin Z; Zhang G Acad Radiol; 2021 Sep; 28(9):e267-e277. PubMed ID: 32534967 [TBL] [Abstract][Full Text] [Related]
16. CT quantitative parameters to predict the invasiveness of lung pure ground-glass nodules (pGGNs). Han L; Zhang P; Wang Y; Gao Z; Wang H; Li X; Ye Z Clin Radiol; 2018 May; 73(5):504.e1-504.e7. PubMed ID: 29397913 [TBL] [Abstract][Full Text] [Related]
17. Measuring pure ground-glass nodules on computed tomography: assessing agreement between a commercially available deep learning algorithm and radiologists' readings. Zuo Z; Wang P; Zeng W; Qi W; Zhang W Acta Radiol; 2023 Apr; 64(4):1422-1430. PubMed ID: 36317301 [TBL] [Abstract][Full Text] [Related]
18. Determining the invasiveness of ground-glass nodules using a 3D multi-task network. Yu Y; Wang N; Huang N; Liu X; Zheng Y; Fu Y; Li X; Wu H; Xu J; Cheng J Eur Radiol; 2021 Sep; 31(9):7162-7171. PubMed ID: 33665717 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the invasiveness of pure ground-glass nodules based on dual-head ResNet technique. Yang D; Yang Y; Zhao M; Ji H; Niu Z; Hong B; Shi H; He L; Shao M; Wang J BMC Cancer; 2024 Sep; 24(1):1080. PubMed ID: 39223592 [TBL] [Abstract][Full Text] [Related]
20. Discriminating invasive adenocarcinoma among lung pure ground-glass nodules: a multi-parameter prediction model. Hu F; Huang H; Jiang Y; Feng M; Wang H; Tang M; Zhou Y; Tan X; Liu Y; Xu C; Ding N; Bai C; Hu J; Yang D; Zhang Y J Thorac Dis; 2021 Sep; 13(9):5383-5394. PubMed ID: 34659805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]