These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38592000)

  • 1. Well-Defined Supported ZnO
    Han S; Zhao D; Kondratenko EV
    Acc Chem Res; 2024 May; 57(9):1264-1274. PubMed ID: 38592000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ formation of ZnO
    Zhao D; Tian X; Doronkin DE; Han S; Kondratenko VA; Grunwaldt JD; Perechodjuk A; Vuong TH; Rabeah J; Eckelt R; Rodemerck U; Linke D; Jiang G; Jiao H; Kondratenko EV
    Nature; 2021 Nov; 599(7884):234-238. PubMed ID: 34759363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeolite-Encapsulated Ultrasmall Cu/ZnO
    Cui WG; Li YT; Yu L; Zhang H; Hu TL
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18693-18703. PubMed ID: 33852283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement of Ultrasmall Cu/ZnO
    An B; Zhang J; Cheng K; Ji P; Wang C; Lin W
    J Am Chem Soc; 2017 Mar; 139(10):3834-3840. PubMed ID: 28209054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Methanol Synthesis over Self-Limited ZnO
    Song T; Li R; Wang J; Dong C; Feng X; Ning Y; Mu R; Fu Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316888. PubMed ID: 38078622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors.
    Copéret C
    Acc Chem Res; 2019 Jun; 52(6):1697-1708. PubMed ID: 31150207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Methanol Synthesis from CO
    Kordus D; Widrinna S; Timoshenko J; Lopez Luna M; Rettenmaier C; Chee SW; Ortega E; Karslioglu O; Kühl S; Roldan Cuenya B
    J Am Chem Soc; 2024 Mar; 146(12):8677-8687. PubMed ID: 38472104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current status and perspectives in oxidative, non-oxidative and CO
    Otroshchenko T; Jiang G; Kondratenko VA; Rodemerck U; Kondratenko EV
    Chem Soc Rev; 2021 Jan; 50(1):473-527. PubMed ID: 33205797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy.
    Xu J; Wang Q; Deng F
    Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces.
    Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2844-2855. PubMed ID: 38414834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic XAFS as a tool to probe the reactivity of metal oxide catalysts: quantifying metal oxide support effects.
    Keller DE; Airaksinen SM; Krause AO; Weckhuysen BM; Koningsberger DC
    J Am Chem Soc; 2007 Mar; 129(11):3189-97. PubMed ID: 17323947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in catalytic dehydrogenation of propane over Pt-based catalysts.
    Shan Y; Hu H; Fan X; Zhao Z
    Phys Chem Chem Phys; 2023 Jul; 25(28):18609-18622. PubMed ID: 37404043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silica-supported, narrowly distributed, subnanometric Pt-Zn particles from single sites with high propane dehydrogenation performance.
    Rochlitz L; Searles K; Alfke J; Zemlyanov D; Safonova OV; Copéret C
    Chem Sci; 2019 Dec; 11(6):1549-1555. PubMed ID: 34084386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomically Dispersed Co
    Wu L; Ren Z; He Y; Yang M; Yu Y; Liu Y; Tan L; Tang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48934-48948. PubMed ID: 34615351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced light olefins production via
    Qureshi ZS; Arudra P; Bari Siddiqui MA; Aitani AM; Tanimu G; Alasiri H
    Heliyon; 2022 Mar; 8(3):e09181. PubMed ID: 35368542
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.