BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 3859238)

  • 1. Design of anticancer drugs using modeling techniques.
    Balaji VN; Dixon JS; Smith DH; Venkataraghavan R; Murdock KC
    Ann N Y Acad Sci; 1985; 439():140-61. PubMed ID: 3859238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational drug determinants of the sequence specificity of drug-stimulated topoisomerase II DNA cleavage.
    Capranico G; Palumbo M; Tinelli S; Mabilia M; Pozzan A; Zunino F
    J Mol Biol; 1994 Jan; 235(4):1218-30. PubMed ID: 8308885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative molecular pharmacology in leukemic L1210 cells of the anthracene anticancer drugs mitoxantrone and bisantrene.
    Bowden GT; Roberts R; Alberts DS; Peng YM; Garcia D
    Cancer Res; 1985 Oct; 45(10):4915-20. PubMed ID: 4027978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of the antitumor agents mitoxantrone and bisantrene with deoxyribonucleic acids studied by electron microscopy.
    Lown JW; Hanstock CC; Bradley RD; Scraba DG
    Mol Pharmacol; 1984 Jan; 25(1):178-84. PubMed ID: 6708933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations.
    Mazerski J; Martelli S; Borowski E
    Acta Biochim Pol; 1998; 45(1):1-11. PubMed ID: 9701490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of the intercalative binding of the anti-tumour drug anthrapyrazole to double-stranded oligonucleotides.
    Chen KX; Gresh N; Pullman B
    Anticancer Drug Des; 1987 Aug; 2(1):79-84. PubMed ID: 3482353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the topoisomerase II poison 9-amino-[N-(2-dimethylamino)ethyl]acridine-4-carboxamide bound to the DNA hexanucleotide d(CGTACG)2.
    Adams A; Guss JM; Collyer CA; Denny WA; Wakelin LP
    Biochemistry; 1999 Jul; 38(29):9221-33. PubMed ID: 10413496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanics and molecular dynamics studies of the intercalation of dynemicin-A with oligonucleotide models of DNA.
    Cardozo MG; Hopfinger AJ
    Mol Pharmacol; 1991 Dec; 40(6):1023-8. PubMed ID: 1758437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study on interactions between mitoxantrone as an anticancer drug and DNA: application in drug design.
    Riahi S; Reza Ganjali M; Dinarvand R; Karamdoust S; Bagherzadeh K; Norouzi P
    Chem Biol Drug Des; 2008 May; 71(5):474-482. PubMed ID: 18384527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative computer graphics and solution studies of the DNA interaction of substituted anthraquinones based on doxorubicin and mitoxantrone.
    Islam SA; Neidle S; Gandecha BM; Partridge M; Patterson LH; Brown JR
    J Med Chem; 1985 Jul; 28(7):857-64. PubMed ID: 4009608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential DNA recognition by the enantiomers of 1-Rh(MGP)2 phi: a combination of shape selection and direct readout.
    Franklin SJ; Barton JK
    Biochemistry; 1998 Nov; 37(46):16093-105. PubMed ID: 9819202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical studies of the intercalation of 9-hydroxyellipticine in DNA.
    Elcock AH; Rodger A; Richards WG
    Biopolymers; 1996 Sep; 39(3):309-26. PubMed ID: 8756512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical design of novel, 4 base pair selective derivatives of mitoxantrone.
    Gresh N; Kahn PH
    J Biomol Struct Dyn; 1990 Apr; 7(5):1141-60. PubMed ID: 2361003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subsidiary hydrogen bonding of intercalated anthraquinonic anticancer drugs to DNA phosphate.
    Pohle W; Bohl M; Flemming J; Böhlig H
    Biophys Chem; 1990 Apr; 35(2-3):213-26. PubMed ID: 2397273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical investigation on the sequence selective binding of mitoxantrone to double-stranded tetranucleotides.
    Chen KX; Gresh N; Pullman B
    Nucleic Acids Res; 1986 May; 14(9):3799-812. PubMed ID: 3714497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-interactive anticancer aza-anthrapyrazoles: biophysical and biochemical studies relevant to the mechanism of action.
    Sissi C; Moro S; Richter S; Gatto B; Menta E; Spinelli S; Krapcho AP; Zunino F; Palumbo M
    Mol Pharmacol; 2001 Jan; 59(1):96-103. PubMed ID: 11125029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidyl anthraquinones as potential antineoplastic drugs: synthesis, DNA binding, redox cycling, and biological activity.
    Gatto B; Zagotto G; Sissi C; Cera C; Uriarte E; Palù G; Capranico G; Palumbo M
    J Med Chem; 1996 Aug; 39(16):3114-22. PubMed ID: 8759632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1D and 2D 1H NMR studies on bisantrene complexes with short DNA oligomers.
    Yao S; Wilson WD
    Sci China B; 1995 Dec; 38(12):1462-72. PubMed ID: 8745574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution conformation of the (+)-cis-anti-[BP]dG adduct opposite a deletion site in a DNA duplex: intercalation of the covalently attached benzo[a]pyrene into the helix with base displacement of the modified deoxyguanosine into the minor groove.
    Cosman M; Fiala R; Hingerty BE; Amin S; Geacintov NE; Broyde S; Patel DJ
    Biochemistry; 1994 Sep; 33(38):11518-27. PubMed ID: 7918365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-A resolution.
    Wang AH; Ughetto G; Quigley GJ; Rich A
    Biochemistry; 1987 Feb; 26(4):1152-63. PubMed ID: 3567161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.