These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38592692)

  • 1. Role of the ZnO electron transport layer in PbS colloidal quantum dot solar cell yield.
    Chiu A; Lu C; Kachman DE; Rong E; Chintapalli SM; Lin Y; Khurgin D; Thon SM
    Nanoscale; 2024 May; 16(17):8273-8285. PubMed ID: 38592692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing oxygen effect on efficiency and stability of quantum dot photovoltaics.
    Chen X; Li H; Wang L; Wang Z; Liu S; Li G; Wang C; Li X; Zhu H; Wang Y; Zhang X; Liu Y
    J Colloid Interface Sci; 2024 Jul; 676():417-424. PubMed ID: 39033676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.
    Zhang X; Santra PK; Tian L; Johansson MB; Rensmo H; Johansson EMJ
    ACS Nano; 2017 Aug; 11(8):8478-8487. PubMed ID: 28763616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unlocking the Potential of Colloidal Quantum Dot/Organic Hybrid Solar Cells: Band Tunable Interfacial Layer Approach.
    Lee J; Kim B; Kim C; Lee MH; Kozakci I; Cho S; Kim B; Lee SY; Kim J; Oh J; Lee JY
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39408-39416. PubMed ID: 37555937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-temperature solution-processed indium incorporated zinc oxide electron transport layer for high-efficiency lead sulfide colloidal quantum dot solar cells.
    Bashir R; Bilal MK; Bashir A; Zhao J; Asif SU; Ahmad W; Xie J; Hu W
    Nanoscale; 2021 Aug; 13(30):12991-12999. PubMed ID: 34477782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient PbS Quantum Dot Solar Cells with Both Mg-Doped ZnO Window Layer and ZnO Nanocrystal Interface Passivation Layer.
    Ren H; Xu A; Pan Y; Qin D; Hou L; Wang D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33467785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoride passivation of ZnO electron transport layers for efficient PbSe colloidal quantum dot photovoltaics.
    He J; Ge Y; Wang Y; Yuan M; Xia H; Zhang X; Chen X; Wang X; Zhou X; Li K; Chen C; Tang J
    Front Optoelectron; 2023 Oct; 16(1):28. PubMed ID: 37889375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal-annealing of ZnO nanoparticles to passivate traps and improve charge extraction in colloidal quantum dot solar cells.
    Woo HK; Kang MS; Park T; Bang J; Jeon S; Lee WS; Ahn J; Cho G; Ko DK; Kim Y; Ha DH; Oh SJ
    Nanoscale; 2019 Oct; 11(37):17498-17505. PubMed ID: 31532437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective Charge Collection of Electron Transport Layers for High-Performance Quantum Dot Infrared Solar Cells.
    Wang M; Liu S; Wei A; Luo T; Wen X; Li MY; Lu H
    ACS Appl Mater Interfaces; 2024 May; 16(19):24572-24579. PubMed ID: 38690767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sn-Doped Zinc Oxide as an Electron Transporting Layer for Enhanced Performance in PbS Quantum Dot Solar Cells.
    Park M; Lim C; Lee H; Kang B; Hwang HW; Kim SK; Lee P; Kim W; Yu H; Kim T
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32375-32384. PubMed ID: 38869189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics.
    Choi J; Kim Y; Jo JW; Kim J; Sun B; Walters G; GarcĂ­a de Arquer FP; Quintero-Bermudez R; Li Y; Tan CS; Quan LN; Kam APT; Hoogland S; Lu Z; Voznyy O; Sargent EH
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-Shell Diradical-Sensitized Electron Transport Layer for High-Performance Colloidal Quantum Dot Solar Cells.
    Fang S; Huang J; Tao R; Wei Q; Ding X; Yajima S; Chen Z; Zhu W; Liu C; Li Y; Yin N; Song L; Liu Y; Shi G; Wu H; Gao Y; Wen X; Chen Q; Shen Q; Li Y; Liu Z; Li Y; Ma W
    Adv Mater; 2023 May; 35(21):e2212184. PubMed ID: 36870078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment.
    Huang T; Wu C; Yang J; Hu P; Qian L; Sun T; Xiang C
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):915-923. PubMed ID: 38145458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO
    Zhu M; Liu X; Liu S; Chen C; He J; Liu W; Yang J; Gao L; Niu G; Tang J; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2566-2571. PubMed ID: 31854183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Dot-Siloxane Anchoring on Colloidal Quantum Dot Film for Flexible Photovoltaic Cell.
    Kim C; Kozakci I; Lee SY; Kim B; Kim J; Lee J; Ma BS; Oh ES; Kim TS; Lee JY
    Small; 2023 Oct; 19(41):e2302195. PubMed ID: 37300352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverted colloidal quantum dot solar cells.
    Kim GH; Walker B; Kim HB; Kim JY; Sargent EH; Park J; Kim JY
    Adv Mater; 2014 May; 26(20):3321-7. PubMed ID: 24677118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells.
    Neo DC; Zhang N; Tazawa Y; Jiang H; Hughes GM; Grovenor CR; Assender HE; Watt AA
    ACS Appl Mater Interfaces; 2016 May; 8(19):12101-8. PubMed ID: 27090378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S; Stavrinadis A; Gupta S; Konstantatos G
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MgCl
    Gao Y; Patterson R; Hu L; Yuan L; Zhang Z; Hu Y; Chen Z; Teh ZL; Conibeer G; Huang S
    Nanotechnology; 2019 Feb; 30(8):085403. PubMed ID: 30248023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Colloidal Quantum Dot Photodiodes via Suppressing Interface Defects.
    Lu S; Liu P; Yang J; Liu S; Yang Y; Chen L; Liu J; Liu Y; Wang B; Lan X; Zhang J; Gao L; Tang J
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12061-12069. PubMed ID: 36848237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.