BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 38592951)

  • 21. Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation.
    Lee S; Marmagne A; Park J; Fabien C; Yim Y; Kim SJ; Kim TH; Lim PO; Masclaux-Daubresse C; Nam HG
    Plant J; 2020 Jul; 103(1):7-20. PubMed ID: 32369636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foliar Pre-Treatment with Abscisic Acid Enhances Olive Tree Drought Adaptability.
    Brito C; Dinis LT; Ferreira H; Moutinho-Pereira J; Correia CM
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32182702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome Response to Drought, Rehydration and Re-Dehydration in Potato.
    Chen Y; Li C; Yi J; Yang Y; Lei C; Gong M
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31881689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pairwise efficiency: a new mathematical approach to qPCR data analysis increases the precision of the calibration curve assay.
    Panina Y; Germond A; David BG; Watanabe TM
    BMC Bioinformatics; 2019 May; 20(1):295. PubMed ID: 31146686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive transcriptomics, proteomics, and metabolomics analyses of the mechanisms regulating tiller production in low-tillering wheat.
    Wang Z; Shi H; Yu S; Zhou W; Li J; Liu S; Deng M; Ma J; Wei Y; Zheng Y; Liu Y
    Theor Appl Genet; 2019 Aug; 132(8):2181-2193. PubMed ID: 31020386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis.
    Zhang X; Wang X; Zhuang L; Gao Y; Huang B
    Physiol Plant; 2019 Dec; 167(4):488-501. PubMed ID: 30977137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drought tolerance of sugarcane propagules is improved when origin material faces water deficit.
    Marcos FCC; Silveira NM; Marchiori PER; Machado EC; Souza GM; Landell MGA; Ribeiro RV
    PLoS One; 2018; 13(12):e0206716. PubMed ID: 30586361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morpho-physiological responses of tall wheatgrass populations to different levels of water stress.
    Borrajo CI; Sánchez-Moreiras AM; Reigosa MJ
    PLoS One; 2018; 13(12):e0209281. PubMed ID: 30557312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways.
    Avramova Z
    Plant Cell Environ; 2019 Mar; 42(3):983-997. PubMed ID: 30299553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets.
    Wedeking R; Maucourt M; Deborde C; Moing A; Gibon Y; Goldbach HE; Wimmer MA
    PLoS One; 2018; 13(5):e0196102. PubMed ID: 29738573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intraspecific differences in long-term drought tolerance in perennial ryegrass.
    Cyriac D; Hofmann RW; Stewart A; Sathish P; Winefield CS; Moot DJ
    PLoS One; 2018; 13(4):e0194977. PubMed ID: 29617413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drought priming improves subsequent more severe drought in a drought-sensitive cultivar of olive cv.
    Ben Abdallah M; Methenni K; Nouairi I; Zarrouk M; Youssef NB
    Sci Hortic; 2017 Jul; 221():43-52. PubMed ID: 28713194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drought stress memory in the photosynthetic mechanisms of an invasive CAM species, Aptenia cordifolia.
    Pintó-Marijuan M; Cotado A; Fleta-Soriano E; Munné-Bosch S
    Photosynth Res; 2017 Mar; 131(3):241-253. PubMed ID: 27757688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics.
    Crisp PA; Ganguly D; Eichten SR; Borevitz JO; Pogson BJ
    Sci Adv; 2016 Feb; 2(2):e1501340. PubMed ID: 26989783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone.
    Avramova V; AbdElgawad H; Zhang Z; Fotschki B; Casadevall R; Vergauwen L; Knapen D; Taleisnik E; Guisez Y; Asard H; Beemster GT
    Plant Physiol; 2015 Oct; 169(2):1382-96. PubMed ID: 26297138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Canopy architectural and physiological characterization of near-isogenic wheat lines differing in the tiller inhibition gene tin.
    Moeller C; Evers JB; Rebetzke G
    Front Plant Sci; 2014; 5():617. PubMed ID: 25520724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
    Love MI; Huber W; Anders S
    Genome Biol; 2014; 15(12):550. PubMed ID: 25516281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved tolerance to drought stress after anthesis due to priming before anthesis in wheat (Triticum aestivum L.) var. Vinjett.
    Wang X; Vignjevic M; Jiang D; Jacobsen S; Wollenweber B
    J Exp Bot; 2014 Dec; 65(22):6441-56. PubMed ID: 25205581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana.
    Ding Y; Virlouvet L; Liu N; Riethoven JJ; Fromm M; Avramova Z
    BMC Plant Biol; 2014 May; 14():141. PubMed ID: 24885787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions.
    Huang L; Yan H; Jiang X; Yin G; Zhang X; Qi X; Zhang Y; Yan Y; Ma X; Peng Y
    PLoS One; 2014; 9(4):e93724. PubMed ID: 24699822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.