These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38593033)

  • 1. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training Neural Nets To Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality.
    Amabilino S; Bratholm LA; Bennie SJ; Vaucher AC; Reiher M; Glowacki DR
    J Phys Chem A; 2019 May; 123(20):4486-4499. PubMed ID: 30892040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Searching Configurations in Uncertainty Space: Active Learning of High-Dimensional Neural Network Reactive Potentials.
    Lin Q; Zhang L; Zhang Y; Jiang B
    J Chem Theory Comput; 2021 May; 17(5):2691-2701. PubMed ID: 33904718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations.
    Van Speybroeck V; Bocus M; Cnudde P; Vanduyfhuys L
    ACS Catal; 2023 Sep; 13(17):11455-11493. PubMed ID: 37671178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
    Jose KV; Artrith N; Behler J
    J Chem Phys; 2012 May; 136(19):194111. PubMed ID: 22612084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Network Potential Energy Surfaces for Small Molecules and Reactions.
    Manzhos S; Carrington T
    Chem Rev; 2021 Aug; 121(16):10187-10217. PubMed ID: 33021368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rise of Neural Networks for Materials and Chemical Dynamics.
    Kulichenko M; Smith JS; Nebgen B; Li YW; Fedik N; Boldyrev AI; Lubbers N; Barros K; Tretiak S
    J Phys Chem Lett; 2021 Jul; 12(26):6227-6243. PubMed ID: 34196559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Multimodal Machine Learning Potentials: Toward a Physics-Aware Artificial Intelligence.
    Zubatiuk T; Isayev O
    Acc Chem Res; 2021 Apr; 54(7):1575-1585. PubMed ID: 33715355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.
    Zaverkin V; Holzmüller D; Steinwart I; Kästner J
    J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty-driven dynamics for active learning of interatomic potentials.
    Kulichenko M; Barros K; Lubbers N; Li YW; Messerly R; Tretiak S; Smith JS; Nebgen B
    Nat Comput Sci; 2023 Mar; 3(3):230-239. PubMed ID: 38177878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the reliability of machine learned potentials for modeling inhomogeneous liquids.
    Fazel K; Karimitari N; Shah T; Sutton C; Sundararaman R
    J Comput Chem; 2024 Aug; 45(21):1821-1828. PubMed ID: 38662330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane.
    Abedi M; Behler J; Goldsmith CF
    J Chem Theory Comput; 2023 Nov; 19(21):7825-7832. PubMed ID: 37902963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatically growing global reactive neural network potential energy surfaces: A trajectory-free active learning strategy.
    Lin Q; Zhang Y; Zhao B; Jiang B
    J Chem Phys; 2020 Apr; 152(15):154104. PubMed ID: 32321263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining the physics of transfer learning in data-driven turbulence modeling.
    Subel A; Guan Y; Chattopadhyay A; Hassanzadeh P
    PNAS Nexus; 2023 Mar; 2(3):pgad015. PubMed ID: 36896127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.