These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38593033)

  • 21. Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks.
    Schwalbe-Koda D; Tan AR; Gómez-Bombarelli R
    Nat Commun; 2021 Aug; 12(1):5104. PubMed ID: 34429418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials.
    Shayestehpour O; Zahn S
    J Chem Theory Comput; 2023 Dec; 19(23):8732-8742. PubMed ID: 37972596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physically informed artificial neural networks for atomistic modeling of materials.
    Pun GPP; Batra R; Ramprasad R; Mishin Y
    Nat Commun; 2019 May; 10(1):2339. PubMed ID: 31138813
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast Near
    Lu F; Cheng L; DiRisio RJ; Finney JM; Boyer MA; Moonkaen P; Sun J; Lee SJR; Deustua JE; Miller TF; McCoy AB
    J Phys Chem A; 2022 Jun; 126(25):4013-4024. PubMed ID: 35715227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural network potentials for chemistry: concepts, applications and prospects.
    Käser S; Vazquez-Salazar LI; Meuwly M; Töpfer K
    Digit Discov; 2023 Feb; 2(1):28-58. PubMed ID: 36798879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials.
    Hou P; Tian Y; Meng X
    Chemistry; 2024 Sep; 30(49):e202401373. PubMed ID: 38877181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
    Shen L; Yang W
    J Chem Theory Comput; 2018 Mar; 14(3):1442-1455. PubMed ID: 29438614
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Parallel Multistream Training of High-Dimensional Neural Network Potentials.
    Singraber A; Morawietz T; Behler J; Dellago C
    J Chem Theory Comput; 2019 May; 15(5):3075-3092. PubMed ID: 30995035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural Network Potentials: A Concise Overview of Methods.
    Kocer E; Ko TW; Behler J
    Annu Rev Phys Chem; 2022 Apr; 73():163-186. PubMed ID: 34982580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical studies on triplet-state driven dissociation of formaldehyde by quasi-classical molecular dynamics simulation on machine-learning potential energy surface.
    Lin S; Peng D; Yang W; Gu FL; Lan Z
    J Chem Phys; 2021 Dec; 155(21):214105. PubMed ID: 34879677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using principal component analysis for neural network high-dimensional potential energy surface.
    Casier B; Carniato S; Miteva T; Capron N; Sisourat N
    J Chem Phys; 2020 Jun; 152(23):234103. PubMed ID: 32571045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A data-guided approach for the evaluation of zeolites for hydrogen storage with the aid of molecular simulations.
    Manda T; Barasa GO; Louis H; Irfan A; Agumba JO; Lugasi SO; Pembere AMS
    J Mol Model; 2024 Jan; 30(2):43. PubMed ID: 38236500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interatomic Potentials Transferability for Molecular Simulations: A Comparative Study for Platinum, Gold and Silver.
    Rassoulinejad-Mousavi SM; Zhang Y
    Sci Rep; 2018 Feb; 8(1):2424. PubMed ID: 29402962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Structural Properties of Pure Silica Zeolites Using Deep Neural Network Potentials.
    Sours TG; Kulkarni AR
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1455-1463. PubMed ID: 36733763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.