BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38593075)

  • 1. Removal of phosphoglycolate in hyperthermophilic archaea.
    Michimori Y; Izaki R; Su Y; Fukuyama Y; Shimamura S; Nishimura K; Miwa Y; Hamakita S; Shimosaka T; Makino Y; Takeno R; Sato T; Beppu H; Cann I; Kanai T; Nunoura T; Atomi H
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2311390121. PubMed ID: 38593075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-mediated de novo synthesis of glycolate-based polyhydroxyalkanoate in Escherichia coli.
    Matsumoto K; Saito J; Yokoo T; Hori C; Nagata A; Kudoh Y; Ooi T; Taguchi S
    J Biosci Bioeng; 2019 Sep; 128(3):302-306. PubMed ID: 30987875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A native phosphoglycolate salvage pathway of the synthetic autotrophic yeast
    Baumschabl M; Mitic BM; Troyer C; Hann S; Ata Ö; Mattanovich D
    Microlife; 2024; 5():uqad046. PubMed ID: 38234447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphoglycolate salvage in a chemolithoautotroph using the Calvin cycle.
    Claassens NJ; Scarinci G; Fischer A; Flamholz AI; Newell W; Frielingsdorf S; Lenz O; Bar-Even A
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22452-22461. PubMed ID: 32820073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium.
    Frolov EN; Kublanov IV; Toshchakov SV; Lunev EA; Pimenov NV; Bonch-Osmolovskaya EA; Lebedinsky AV; Chernyh NA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18638-18646. PubMed ID: 31451656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-carboxylating pentose bisphosphate pathway in halophilic archaea.
    Sato T; Utashima SH; Yoshii Y; Hirata K; Kanda S; Onoda Y; Jin JQ; Xiao S; Minami R; Fukushima H; Noguchi A; Manabe Y; Fukase K; Atomi H
    Commun Biol; 2022 Nov; 5(1):1290. PubMed ID: 36434094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of salinity-induced photorespiratory glycolate metabolism in Anabaena sp. PCC 7120.
    Srivastava AK; Alexova R; Jeon YJ; Kohli GS; Neilan BA
    Microbiology (Reading); 2011 Mar; 157(Pt 3):911-917. PubMed ID: 21163840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ancient metabolite damage-repair system sustains photosynthesis in plants.
    Leister D; Sharma A; Kerber N; Nägele T; Reiter B; Pasch V; Beeh S; Jahns P; Barbato R; Pribil M; Rühle T
    Nat Commun; 2023 May; 14(1):3023. PubMed ID: 37230969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribulose bisphosphate carboxylase activity and a Calvin cycle gene cluster in Sulfobacillus species.
    Caldwell PE; MacLean MR; Norris PR
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2231-2240. PubMed ID: 17600067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The regulatory interplay between photorespiration and photosynthesis.
    Timm S; Florian A; Fernie AR; Bauwe H
    J Exp Bot; 2016 May; 67(10):2923-9. PubMed ID: 26969745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based catalytic optimization of a type III Rubisco from a hyperthermophile.
    Nishitani Y; Yoshida S; Fujihashi M; Kitagawa K; Doi T; Atomi H; Imanaka T; Miki K
    J Biol Chem; 2010 Dec; 285(50):39339-47. PubMed ID: 20926376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate.
    Wang D; Zhang Y; Pohlmann EL; Li J; Roberts GP
    J Bacteriol; 2011 Jul; 193(13):3293-303. PubMed ID: 21531802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002.
    De Porcellinis AJ; Nørgaard H; Brey LMF; Erstad SM; Jones PR; Heazlewood JL; Sakuragi Y
    Metab Eng; 2018 May; 47():170-183. PubMed ID: 29510212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photorespiratory glycolate-glyoxylate metabolism.
    Dellero Y; Jossier M; Schmitz J; Maurino VG; Hodges M
    J Exp Bot; 2016 May; 67(10):3041-52. PubMed ID: 26994478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
    Sato T; Atomi H; Imanaka T
    Science; 2007 Feb; 315(5814):1003-6. PubMed ID: 17303759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rubisco Function, Evolution, and Engineering.
    Prywes N; Phillips NR; Tuck OT; Valentin-Alvarado LE; Savage DF
    Annu Rev Biochem; 2023 Jun; 92():385-410. PubMed ID: 37127263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pentose bisphosphate pathway for nucleoside degradation in Archaea.
    Aono R; Sato T; Imanaka T; Atomi H
    Nat Chem Biol; 2015 May; 11(5):355-60. PubMed ID: 25822915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast metabolic engineering for carbon dioxide fixation and its application.
    Rin Kim S; Kim SJ; Kim SK; Seo SO; Park S; Shin J; Kim JS; Park BR; Jin YS; Chang PS; Park YC
    Bioresour Technol; 2022 Feb; 346():126349. PubMed ID: 34800639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does 2-phosphoglycolate serve as an internal signal molecule of inorganic carbon deprivation in the cyanobacterium Synechocystis sp. PCC 6803?
    Haimovich-Dayan M; Lieman-Hurwitz J; Orf I; Hagemann M; Kaplan A
    Environ Microbiol; 2015 May; 17(5):1794-804. PubMed ID: 25297829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.