BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38593345)

  • 1. Cancer-associated point mutations within the extracellular domain of PTPRD affect protein stability and HSPG interaction.
    Matsui Y; Imai A; Izumi H; Yasumura M; Makino T; Shimizu T; Sato M; Mori H; Yoshida T
    FASEB J; 2024 Apr; 38(7):e23609. PubMed ID: 38593345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and validation of tissue or ctDNA PTPRD phosphatase domain deleterious mutations as prognostic and predictive biomarkers for immune checkpoint inhibitors in non-squamous NSCLC.
    Sun Y; Duan J; Fang W; Wang Z; Du X; Wang X; Li C; Cai S; Zhao J; Li S; Zhang L; Bai H; Wang J
    BMC Med; 2021 Oct; 19(1):239. PubMed ID: 34615542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-selective positive allosteric modulation of PTPRD's phosphatase by flavonols.
    Henderson IM; Marez C; Dokladny K; Smoake J; Martinez M; Johnson D; Uhl GR
    Biochem Pharmacol; 2022 Aug; 202():115109. PubMed ID: 35636503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating PTPRD function with ectodomain antibodies.
    Qian Z; Song D; Ipsaro JJ; Bautista C; Joshua-Tor L; Yeh JT; Tonks NK
    Genes Dev; 2023 Aug; 37(15-16):743-759. PubMed ID: 37669874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers.
    Veeriah S; Brennan C; Meng S; Singh B; Fagin JA; Solit DB; Paty PB; Rohle D; Vivanco I; Chmielecki J; Pao W; Ladanyi M; Gerald WL; Liau L; Cloughesy TC; Mischel PS; Sander C; Taylor B; Schultz N; Major J; Heguy A; Fang F; Mellinghoff IK; Chan TA
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9435-40. PubMed ID: 19478061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development.
    Henderson IM; Zeng F; Bhuiyan NH; Luo D; Martinez M; Smoake J; Bi F; Perera C; Johnson D; Prisinzano TE; Wang W; Uhl GR
    Biochem Pharmacol; 2022 Jan; 195():114868. PubMed ID: 34863978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational and functional analysis of the tumor-suppressor PTPRD in human melanoma.
    Walia V; Prickett TD; Kim JS; Gartner JJ; Lin JC; Zhou M; Rosenberg SA; Elble RC; Solomon DA; Waldman T; Samuels Y
    Hum Mutat; 2014 Nov; 35(11):1301-10. PubMed ID: 25113440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human basement membrane heparan sulfate proteoglycan core protein: a 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor.
    Kallunki P; Tryggvason K
    J Cell Biol; 1992 Jan; 116(2):559-71. PubMed ID: 1730768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein tyrosine phosphatase receptor delta acts as a neuroblastoma tumor suppressor by destabilizing the aurora kinase A oncogene.
    Meehan M; Parthasarathi L; Moran N; Jefferies CA; Foley N; Lazzari E; Murphy D; Ryan J; Ortiz B; Fabius AW; Chan TA; Stallings RL
    Mol Cancer; 2012 Feb; 11():6. PubMed ID: 22305495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension.
    Coles CH; Shen Y; Tenney AP; Siebold C; Sutton GC; Lu W; Gallagher JT; Jones EY; Flanagan JG; Aricescu AR
    Science; 2011 Apr; 332(6028):484-8. PubMed ID: 21454754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IL-6 induces tumor suppressor protein tyrosine phosphatase receptor type D by inhibiting miR-34a to prevent IL-6 signaling overactivation.
    Zhang F; Wang B; Qin T; Wang L; Zhang Q; Lu Y; Song B; Yu X; Li L
    Mol Cell Biochem; 2020 Oct; 473(1-2):1-13. PubMed ID: 32602014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recurrent epigenetic silencing of the PTPRD tumor suppressor in laryngeal squamous cell carcinoma.
    Szaumkessel M; Wojciechowska S; Janiszewska J; Zemke N; Byzia E; Kiwerska K; Kostrzewska-Poczekaj M; Ustaszewski A; Jarmuz-Szymczak M; Grenman R; Wierzbicka M; Bartochowska A; Szyfter K; Giefing M
    Tumour Biol; 2017 Mar; 39(3):1010428317691427. PubMed ID: 28345455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma.
    Aricescu AR; McKinnell IW; Halfter W; Stoker AW
    Mol Cell Biol; 2002 Mar; 22(6):1881-92. PubMed ID: 11865065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential.
    Yang H; Wang L
    Adv Cancer Res; 2023; 157():251-291. PubMed ID: 36725112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis.
    Ortiz B; Fabius AW; Wu WH; Pedraza A; Brennan CW; Schultz N; Pitter KL; Bromberg JF; Huse JT; Holland EC; Chan TA
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8149-54. PubMed ID: 24843164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes.
    Uhl GR; Martinez MJ
    Ann N Y Acad Sci; 2019 Sep; 1451(1):112-129. PubMed ID: 30648269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis.
    Tomita H; Cornejo F; Aranda-Pino B; Woodard CL; Rioseco CC; Neel BG; Alvarez AR; Kaplan DR; Miller FD; Cancino GI
    Cell Rep; 2020 Jan; 30(1):215-228.e5. PubMed ID: 31914388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nephronectin binds to heparan sulfate proteoglycans via its MAM domain.
    Sato Y; Shimono C; Li S; Nakano I; Norioka N; Sugiura N; Kimata K; Yamada M; Sekiguchi K
    Matrix Biol; 2013 Apr; 32(3-4):188-95. PubMed ID: 23357641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell surface phosphatidylinositol-anchored heparan sulfate proteoglycan initiates mouse melanoma cell adhesion to a fibronectin-derived, heparin-binding synthetic peptide.
    Drake SL; Klein DJ; Mickelson DJ; Oegema TR; Furcht LT; McCarthy JB
    J Cell Biol; 1992 Jun; 117(6):1331-41. PubMed ID: 1607392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of novel binding sites for heparin in receptor protein-tyrosine phosphatase (RPTPσ): Implications for proteoglycan signaling.
    Katagiri Y; Morgan AA; Yu P; Bangayan NJ; Junka R; Geller HM
    J Biol Chem; 2018 Jul; 293(29):11639-11647. PubMed ID: 29880643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.