These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38593380)

  • 21. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.
    Pleil JD; Smith LB; Zelnick SD
    Environ Health Perspect; 2000 Mar; 108(3):183-92. PubMed ID: 10706522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro neurotoxicity screening of engine oil- and hydraulic fluid-derived aircraft cabin bleed-air contamination.
    Gerber LS; van Kleef RGDM; Fokkens P; Cassee FR; Westerink RH
    Neurotoxicology; 2023 May; 96():184-196. PubMed ID: 37120036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetylcholinesterase and neuropathy target esterase activities in 11 cases of symptomatic flight crew members after fume events.
    Heutelbeck AR; Bornemann C; Lange M; Seeckts A; Müller MM
    J Toxicol Environ Health A; 2016; 79(22-23):1050-1056. PubMed ID: 27924713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An occupational exposure assessment for engineered nanoparticles used in semiconductor fabrication.
    Shepard MN; Brenner S
    Ann Occup Hyg; 2014 Mar; 58(2):251-65. PubMed ID: 24284882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the potential for transisomerisation of trycresyl phosphate with a palladium catalyst and its implications for aircraft cabin air quality.
    Megson D; Hajimirzaee S; Doyle A; Cannon F; Balouet JC
    Chemosphere; 2019 Jan; 215():532-534. PubMed ID: 30342398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prolonged Disability following Re-Exposure after Complete Recovery from Aerotoxic Syndrome: A Case Report.
    Creeden R; Blonien N; Schultz JK; Wheeler J; Haltson EL; McKinney ZJ
    Int J Environ Res Public Health; 2023 Dec; 20(24):. PubMed ID: 38131708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal evolution of nanoparticle aerosols in workplace exposure.
    Seipenbusch M; Binder A; Kasper G
    Ann Occup Hyg; 2008 Nov; 52(8):707-16. PubMed ID: 18927101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.
    Shehadi M; Jones B; Hosni M
    Indoor Air; 2016 Jun; 26(3):478-88. PubMed ID: 25864418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occupational exposure assessment of airborne chemical contaminants among professional ski waxers.
    Freberg BI; Olsen R; Daae HL; Hersson M; Thorud S; Ellingsen DG; Molander P
    Ann Occup Hyg; 2014 Jun; 58(5):601-11. PubMed ID: 24607772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.
    Solbu K; Daae HL; Olsen R; Thorud S; Ellingsen DG; Lindgren T; Bakke B; Lundanes E; Molander P
    J Environ Monit; 2011 May; 13(5):1393-403. PubMed ID: 21399836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cabin environment and perception of cabin air quality among commercial aircrew.
    Lindgren T; Norbäck D; Andersson K; Dammström BG
    Aviat Space Environ Med; 2000 Aug; 71(8):774-82. PubMed ID: 10954353
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forensic aspects of the aerotoxic syndrome.
    Abeyratne R
    Med Law; 2002; 21(1):179-99. PubMed ID: 12017442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary.
    de Ree H; van den Berg M; Brand T; Mulder GJ; Simons R; Veldhuijzen van Zanten B; Westerink RH
    Neurotoxicology; 2014 Dec; 45():209-15. PubMed ID: 25193069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contamination and release of nanomaterials associated with the use of personal protective clothing.
    Tsai CS
    Ann Occup Hyg; 2015 May; 59(4):491-503. PubMed ID: 25582117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel.
    Sriram K; Jefferson AM; Lin GX; Afshari A; Zeidler-Erdely PC; Meighan TG; McKinney W; Jackson M; Cumpston A; Cumpston JL; Leonard HD; Frazer DG; Antonini JM
    Inhal Toxicol; 2014 Oct; 26(12):720-32. PubMed ID: 25265048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures.
    Niu J; Rasmussen PE; Magee R; Nilsson G
    Environ Sci Process Impacts; 2015 Jan; 17(1):98-109. PubMed ID: 25410705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomonitoring of volatile organic compounds and organophosphorus flame retardands in commercial aircrews after "fume and smell events".
    Weiss T; Koslitz S; Nöllenheidt C; Caumanns C; Hedtmann J; Käfferlein HU; Brüning T
    Int J Hyg Environ Health; 2024 Jun; 259():114381. PubMed ID: 38652941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.