These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38593555)

  • 1. Applying Convolutional Neural Networks to data on unstructured meshes with space-filling curves.
    Heaney CE; Li Y; Matar OK; Pain CC
    Neural Netw; 2024 Jul; 175():106198. PubMed ID: 38593555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAEVT: Convolutional Autoencoder Meets Lightweight Vision Transformer for Hyperspectral Image Classification.
    Zhang Z; Li T; Tang X; Hu X; Peng Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.
    Eo T; Shin H; Jun Y; Kim T; Hwang D
    Med Image Anal; 2020 Jul; 63():101689. PubMed ID: 32299061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced-order modeling for stochastic large-scale and time-dependent flow problems using deep spatial and temporal convolutional autoencoders.
    Abdedou A; Soulaimani A
    Adv Model Simul Eng Sci; 2023; 10(1):7. PubMed ID: 37215229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder.
    Jung Y; Kim T; Han MR; Kim S; Kim G; Lee S; Choi YJ
    Sci Rep; 2022 Oct; 12(1):17024. PubMed ID: 36220853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems.
    Prassl AJ; Kickinger F; Ahammer H; Grau V; Schneider JE; Hofer E; Vigmond EJ; Trayanova NA; Plank G
    IEEE Trans Biomed Eng; 2009 May; 56(5):1318-30. PubMed ID: 19203877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification.
    Sun Y; Xue B; Zhang M; Yen GG
    IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2295-2309. PubMed ID: 30530340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
    Trew ML; Smaill BH; Bullivant DP; Hunter PJ; Pullan AJ
    Math Biosci; 2005 Dec; 198(2):169-89. PubMed ID: 16140344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain independent post-processing with graph U-nets: applications to electrical impedance tomographic imaging⋆.
    Herzberg W; Hauptmann A; Hamilton SJ
    Physiol Meas; 2023 Dec; 44(12):. PubMed ID: 37944184
    [No Abstract]   [Full Text] [Related]  

  • 12. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
    Eo T; Jun Y; Kim T; Jang J; Lee HJ; Hwang D
    Magn Reson Med; 2018 Nov; 80(5):2188-2201. PubMed ID: 29624729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multi-Purpose Shallow Convolutional Neural Network for Chart Images.
    Bajić F; Orel O; Habijan M
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images.
    Zang B; Ding L; Feng Z; Zhu M; Lei T; Xing M; Zhou X
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lossless compression of medical images using Hilbert space-filling curves.
    Liang JY; Chen CS; Huang CH; Liu L
    Comput Med Imaging Graph; 2008 Apr; 32(3):174-82. PubMed ID: 18248789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of compact-stencil interpolation algorithms for unstructured mesh finite volume solver.
    Tasri A; Susilawati A
    Heliyon; 2021 Apr; 7(4):e06875. PubMed ID: 33997405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training Convolutional Neural Networks and Compressed Sensing End-to-End for Microscopy Cell Detection.
    Xue Y; Bigras G; Hugh J; Ray N
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2632-2641. PubMed ID: 30908206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Practical method of cell segmentation in electron microscope image stack using deep convolutional neural network☆.
    Konishi K; Mimura M; Nonaka T; Sase I; Nishioka H; Suga M
    Microscopy (Oxf); 2019 Aug; 68(4):338-341. PubMed ID: 31220299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.