These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38593720)
1. Data analysis of the influence of microstructure, composition, and loading conditions on stress corrosion cracking behavior of Mg alloys. Gu J; Wieland DCF; Tolnai D; Hindenlang B; Pereira da Silva JG; Willumeit-Römer R; Höche D J Mech Behav Biomed Mater; 2024 Jun; 154():106510. PubMed ID: 38593720 [TBL] [Abstract][Full Text] [Related]
2. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Choudhary L; Singh Raman RK; Hofstetter J; Uggowitzer PJ Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():629-36. PubMed ID: 25063163 [TBL] [Abstract][Full Text] [Related]
3. Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments. Törne K; Örnberg A; Weissenrieder J Acta Biomater; 2017 Jan; 48():541-550. PubMed ID: 27780765 [TBL] [Abstract][Full Text] [Related]
4. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
5. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Liu J; Bian D; Zheng Y; Chu X; Lin Y; Wang M; Lin Z; Li M; Zhang Y; Guan S Acta Biomater; 2020 Jan; 102():508-528. PubMed ID: 31722254 [TBL] [Abstract][Full Text] [Related]
6. Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy. Harandi SE; Banerjee PC; Easton CD; Singh Raman RK Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():335-345. PubMed ID: 28866172 [TBL] [Abstract][Full Text] [Related]
7. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr. Chen L; Bin Y; Zou W; Wang X; Li W J Mech Behav Biomed Mater; 2017 Feb; 66():187-200. PubMed ID: 27894051 [TBL] [Abstract][Full Text] [Related]
8. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Choudhary L; Raman RK Acta Biomater; 2012 Feb; 8(2):916-23. PubMed ID: 22075121 [TBL] [Abstract][Full Text] [Related]
9. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes. Hakimi O; Aghion E; Goldman J Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129 [TBL] [Abstract][Full Text] [Related]
10. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid. Jafari S; Singh Raman RK Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():278-287. PubMed ID: 28575985 [TBL] [Abstract][Full Text] [Related]
11. Improving stress corrosion cracking behavior of AZ31 alloy with conformal thin titania and zirconia coatings for biomedical applications. Peron M; Bin Afif A; Dadlani AL; Berto F; Torgersen J J Mech Behav Biomed Mater; 2020 Nov; 111():104005. PubMed ID: 32769072 [TBL] [Abstract][Full Text] [Related]
12. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378 [TBL] [Abstract][Full Text] [Related]
13. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993 [TBL] [Abstract][Full Text] [Related]
14. Preparation of medical Mg-Zn alloys and the effect of different zinc contents on the alloy. Hu Y; Guo X; Qiao Y; Wang X; Lin Q J Mater Sci Mater Med; 2022 Jan; 33(1):9. PubMed ID: 34982233 [TBL] [Abstract][Full Text] [Related]
15. Influence of chemical heterogeneity and microstructure on the corrosion resistance of biodegradable WE43 magnesium alloys. Mraied H; Wang W; Cai W J Mater Chem B; 2019 Oct; 7(41):6399-6411. PubMed ID: 31642847 [TBL] [Abstract][Full Text] [Related]
16. The Characterization of Stress Corrosion Cracking in the AE44 Magnesium Casting Alloy Using Quantitative Fractography Methods. Sozańska M; Mościcki A; Czujko T Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835424 [TBL] [Abstract][Full Text] [Related]
17. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid. Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795 [TBL] [Abstract][Full Text] [Related]
18. Microstructural, mechanical, and in vitro corrosion properties of biodegradable Mg-Ag alloys. Elen L; Turen Y; Ahlatci H; Unal M; Ergin D Biointerphases; 2022 Jul; 17(4):041001. PubMed ID: 35794027 [TBL] [Abstract][Full Text] [Related]
19. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Li Z; Gu X; Lou S; Zheng Y Biomaterials; 2008 Apr; 29(10):1329-44. PubMed ID: 18191191 [TBL] [Abstract][Full Text] [Related]
20. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]