BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38593801)

  • 1. 3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification.
    Wang S; Chakraborty S; Fu Y; Lee MP; Liu J; Waldhaus J
    Dev Cell; 2024 Jun; 59(12):1538-1552.e6. PubMed ID: 38593801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved role of Sonic Hedgehog in tonotopic organization of the avian basilar papilla and mammalian cochlea.
    Son EJ; Ma JH; Ankamreddy H; Shin JO; Choi JY; Wu DK; Bok J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3746-51. PubMed ID: 25775517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental gene expression profiling along the tonotopic axis of the mouse cochlea.
    Son EJ; Wu L; Yoon H; Kim S; Choi JY; Bok J
    PLoS One; 2012; 7(7):e40735. PubMed ID: 22808246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoic acid signalling regulates the development of tonotopically patterned hair cells in the chicken cochlea.
    Thiede BR; Mann ZF; Chang W; Ku YC; Son YK; Lovett M; Kelley MW; Corwin JT
    Nat Commun; 2014 May; 5():3840. PubMed ID: 24845860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Catenin is required for radial cell patterning and identity in the developing mouse cochlea.
    Jansson L; Ebeid M; Shen JW; Mokhtari TE; Quiruz LA; Ornitz DM; Huh SH; Cheng AG
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21054-21060. PubMed ID: 31570588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sonic hedgehog (SHH) promotes the differentiation of mouse cochlear neural progenitors via the Math1-Brn3.1 signaling pathway in vitro.
    Hu X; Huang J; Feng L; Fukudome S; Hamajima Y; Lin J
    J Neurosci Res; 2010 Apr; 88(5):927-35. PubMed ID: 19908278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jxc1/Sobp, encoding a nuclear zinc finger protein, is critical for cochlear growth, cell fate, and patterning of the organ of corti.
    Chen Z; Montcouquiol M; Calderon R; Jenkins NA; Copeland NG; Kelley MW; Noben-Trauth K
    J Neurosci; 2008 Jun; 28(26):6633-41. PubMed ID: 18579736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Follistatin regulates the specification of the apical cochlea responsible for low-frequency hearing in mammals.
    Koo HY; Kim MA; Min H; Hwang JY; Prajapati-DiNubila M; Kim KS; Matzuk MM; Park JW; Doetzlhofer A; Kim UK; Bok J
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2213099120. PubMed ID: 36577057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear tonotopy from proteins to perception.
    Fettiplace R
    Bioessays; 2023 Aug; 45(8):e2300058. PubMed ID: 37329318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatostatin receptor types 1 and 2 in the developing mammalian cochlea.
    Bodmer D; Brand Y; Radojevic V
    Dev Neurosci; 2012; 34(4):342-53. PubMed ID: 22986312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinoic acid signaling is necessary for the development of the organ of Corti.
    Raz Y; Kelley MW
    Dev Biol; 1999 Sep; 213(1):180-93. PubMed ID: 10452855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture.
    Kelley MW; Xu XM; Wagner MA; Warchol ME; Corwin JT
    Development; 1993 Dec; 119(4):1041-53. PubMed ID: 8306874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sufu- and Spop-mediated regulation of Gli2 is essential for the control of mammalian cochlear hair cell differentiation.
    Qin T; Ho CC; Wang B; Hui CC; Sham MH
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2206571119. PubMed ID: 36252002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the cochlea.
    Driver EC; Kelley MW
    Development; 2020 Jun; 147(12):. PubMed ID: 32571852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional live imaging of Atoh1 reveals the dynamics of hair cell induction and organization in the developing cochlea.
    Tateya T; Sakamoto S; Ishidate F; Hirashima T; Imayoshi I; Kageyama R
    Development; 2019 Nov; 146(21):. PubMed ID: 31676552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradients of glucose metabolism regulate morphogen signalling required for specifying tonotopic organisation in the chicken cochlea.
    O'Sullivan JDB; Blacker TS; Scott C; Chang W; Ahmed M; Yianni V; Mann ZF
    Elife; 2023 Aug; 12():. PubMed ID: 37539863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear Surface Preparation in the Adult Mouse.
    Fang QJ; Wu F; Chai R; Sha SH
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear.
    Mann ZF; Thiede BR; Chang W; Shin JB; May-Simera HL; Lovett M; Corwin JT; Kelley MW
    Nat Commun; 2014 May; 5():3839. PubMed ID: 24845721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sox2 and FGF20 interact to regulate organ of Corti hair cell and supporting cell development in a spatially-graded manner.
    Yang LM; Cheah KSE; Huh SH; Ornitz DM
    PLoS Genet; 2019 Jul; 15(7):e1008254. PubMed ID: 31276493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.