BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38593801)

  • 41. On the Tonotopy of the Low-Frequency Region of the Cochlea.
    Recio-Spinoso A; Dong W; Oghalai JS
    J Neurosci; 2023 Jul; 43(28):5172-5179. PubMed ID: 37225436
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial and temporal expression of PORCN is highly dynamic in the developing mouse cochlea.
    Oliver BL; Young CA; Munnamalai V
    Gene Expr Patterns; 2021 Dec; 42():119214. PubMed ID: 34547456
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Progressive deafness and altered cochlear innervation in knock-out mice lacking prosaposin.
    Akil O; Chang J; Hiel H; Kong JH; Yi E; Glowatzki E; Lustig LR
    J Neurosci; 2006 Dec; 26(50):13076-88. PubMed ID: 17167097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generating high-fidelity cochlear organoids from human pluripotent stem cells.
    Moore ST; Nakamura T; Nie J; Solivais AJ; Aristizábal-Ramírez I; Ueda Y; Manikandan M; Reddy VS; Romano DR; Hoffman JR; Perrin BJ; Nelson RF; Frolenkov GI; Chuva de Sousa Lopes SM; Hashino E
    Cell Stem Cell; 2023 Jul; 30(7):950-961.e7. PubMed ID: 37419105
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative High-Resolution Cellular Map of the Organ of Corti.
    Waldhaus J; Durruthy-Durruthy R; Heller S
    Cell Rep; 2015 Jun; 11(9):1385-99. PubMed ID: 26027927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential Phase Arrangement of Cellular Clocks along the Tonotopic Axis of the Mouse Cochlea Ex Vivo.
    Park JS; Cederroth CR; Basinou V; Sweetapple L; Buijink R; Lundkvist GB; Michel S; Canlon B
    Curr Biol; 2017 Sep; 27(17):2623-2629.e2. PubMed ID: 28823676
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transfection of mouse cochlear explants by electroporation.
    Driver EC; Kelley MW
    Curr Protoc Neurosci; 2010 Apr; Chapter 4():Unit 4.34.1-10. PubMed ID: 20373505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the development of the mouse cochlear epithelium at the single cell level.
    Kolla L; Kelly MC; Mann ZF; Anaya-Rocha A; Ellis K; Lemons A; Palermo AT; So KS; Mays JC; Orvis J; Burns JC; Hertzano R; Driver EC; Kelley MW
    Nat Commun; 2020 May; 11(1):2389. PubMed ID: 32404924
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cochlear anatomy related to cochlear micromechanics. A review.
    Lim DJ
    J Acoust Soc Am; 1980 May; 67(5):1686-95. PubMed ID: 6768784
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell migration, intercalation and growth regulate mammalian cochlear extension.
    Driver EC; Northrop A; Kelley MW
    Development; 2017 Oct; 144(20):3766-3776. PubMed ID: 28870992
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cholecalcin (28-kDa CaBP) in the rat cochlea. Development in normal and hypothyroid animals. An immunocytochemical study.
    Legrand C; Bréhier A; Clavel MC; Thomasset M; Rabié A
    Brain Res; 1988 Jan; 466(1):121-9. PubMed ID: 3342324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Developmentally regulated expression of ectonucleotidases NTPDase5 and NTPDase6 and UDP-responsive P2Y receptors in the rat cochlea.
    O'Keeffe MG; Thorne PR; Housley GD; Robson SC; Vlajkovic SM
    Histochem Cell Biol; 2010 Apr; 133(4):425-36. PubMed ID: 20217113
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying gene expression programs in single-cell RNA-seq data using linear correlation explanation.
    Nussbaum YI; Hossain KSMT; Kaifi J; Warren WC; Shyu CR; Mitchem JB
    J Biomed Inform; 2024 Jun; 154():104644. PubMed ID: 38631462
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration.
    Walters BJ; Zuo J
    Hear Res; 2013 Mar; 297():68-83. PubMed ID: 23164734
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BMP signaling is necessary for patterning the sensory and nonsensory regions of the developing mammalian cochlea.
    Ohyama T; Basch ML; Mishina Y; Lyons KM; Segil N; Groves AK
    J Neurosci; 2010 Nov; 30(45):15044-51. PubMed ID: 21068310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea.
    Jacques BE; Puligilla C; Weichert RM; Ferrer-Vaquer A; Hadjantonakis AK; Kelley MW; Dabdoub A
    Development; 2012 Dec; 139(23):4395-404. PubMed ID: 23132246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reconstitution of Morphogen Signaling Gradients in Cultured Cells.
    Kim JS; Pineda M; Li P
    Methods Mol Biol; 2021; 2258():43-56. PubMed ID: 33340353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hey1 and Hey2 control the spatial and temporal pattern of mammalian auditory hair cell differentiation downstream of Hedgehog signaling.
    Benito-Gonzalez A; Doetzlhofer A
    J Neurosci; 2014 Sep; 34(38):12865-76. PubMed ID: 25232121
    [TBL] [Abstract][Full Text] [Related]  

  • 60. COUP-TFI controls Notch regulation of hair cell and support cell differentiation.
    Tang LS; Alger HM; Pereira FA
    Development; 2006 Sep; 133(18):3683-93. PubMed ID: 16914494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.