These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38594288)

  • 21. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk.
    Li Y; Ren T; Li Y; Liu Q; Chen Y
    Soft Robot; 2021 Feb; 8(1):97-108. PubMed ID: 32522089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Legged locomotion in resistive terrains.
    Gart S; Alicea R; Gao W; Pusey J; Nicholson JV; Clark JE
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33264754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor transitions in the potential energy landscape-dominated regime.
    Othayoth R; Xuan Q; Wang Y; Li C
    Proc Biol Sci; 2021 Apr; 288(1949):20202734. PubMed ID: 33878929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards autonomous locomotion: CPG-based control of smooth 3D slithering gait transition of a snake-like robot.
    Bing Z; Cheng L; Chen G; Röhrbein F; Huang K; Knoll A
    Bioinspir Biomim; 2017 Apr; 12(3):035001. PubMed ID: 28375848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Get a grip: inward dactyl motions improve efficiency of sideways-walking gait for an amphibious crab-like robot.
    Graf NM; Grezmak JE; Daltorio KA
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 35926481
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomimetic lizard robot for adapting to Martian surface terrain.
    Chen G; Qiao L; Zhou Z; Lei X; Zou M; Richter L; Ji A
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38452382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Minimalist analogue robot discovers animal-like walking gaits.
    Smith BJH; Usherwood JR
    Bioinspir Biomim; 2020 Feb; 15(2):026004. PubMed ID: 31869827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast and Slow Adaptations of Interlimb Coordination
    Aoi S; Amano T; Fujiki S; Senda K; Tsuchiya K
    Front Robot AI; 2021; 8():697612. PubMed ID: 34422913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.
    Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ
    Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Models of benthic bipedalism.
    Giardina F; Mahadevan L
    J R Soc Interface; 2021 Jan; 18(174):20200701. PubMed ID: 33435842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of tail stiffness on a sprawling quadruped locomotion.
    Buckley J; Chikere N; Ozkan-Aydin Y
    Front Robot AI; 2023; 10():1198749. PubMed ID: 37692530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning robust perceptive locomotion for quadrupedal robots in the wild.
    Miki T; Lee J; Hwangbo J; Wellhausen L; Koltun V; Hutter M
    Sci Robot; 2022 Jan; 7(62):eabk2822. PubMed ID: 35044798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral flexion of a compliant spine improves motor performance in a bioinspired mouse robot.
    Bing Z; Rohregger A; Walter F; Huang Y; Lucas P; Morin FO; Huang K; Knoll A
    Sci Robot; 2023 Dec; 8(85):eadg7165. PubMed ID: 38055804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of leg dynamic models for quadrupedal robots with compliant backbone.
    Parra Ricaurte EA; Pareja J; Dominguez S; Rossi C
    Sci Rep; 2022 Aug; 12(1):14579. PubMed ID: 36028739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait transitions and modular organization of mammal locomotion.
    Maes L; Abourachid A
    J Exp Biol; 2013 Jun; 216(Pt 12):2257-65. PubMed ID: 23531814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust and reusable self-organized locomotion of legged robots under adaptive physical and neural communications.
    Sun T; Dai Z; Manoonpong P
    Front Neural Circuits; 2023; 17():1111285. PubMed ID: 37063383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.