These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38594288)

  • 41. On Slip Detection for Quadruped Robots.
    Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy comparison between trot, bound, and gallop using a simple model.
    Nanua P; Waldron KJ
    J Biomech Eng; 1995 Nov; 117(4):466-73. PubMed ID: 8748530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Workspace trajectory generation with smooth gait transition using CPG-based locomotion control for hexapod robot.
    Helal K; Albadin A; Albitar C; Alsaba M
    Heliyon; 2024 Jun; 10(11):e31847. PubMed ID: 38882328
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dog galloping on rough terrain exhibits similar limb co-ordination patterns and gait variability to that on flat terrain.
    Wilshin S; Reeve MA; Spence AJ
    Bioinspir Biomim; 2021 Mar; 16(1):015001. PubMed ID: 33684074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Control and study of bio-inspired quadrupedal gaits on an underactuated miniature robot.
    Askari M; Ugur M; Mahkam N; Yeldan A; Ozcan O
    Bioinspir Biomim; 2023 Jan; 18(2):. PubMed ID: 36608346
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control.
    Sun T; Dai Z; Manoonpong P
    Neural Netw; 2021 Oct; 142():410-427. PubMed ID: 34139657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simple robot suggests physical interlimb communication is essential for quadruped walking.
    Owaki D; Kano T; Nagasawa K; Tero A; Ishiguro A
    J R Soc Interface; 2013 Jan; 10(78):20120669. PubMed ID: 23097501
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gait transitions during unrestrained locomotion in dogs.
    Blaszczyk JW
    Equine Vet J Suppl; 2001 Apr; (33):112-5. PubMed ID: 11721550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A minimal robophysical model of quadriflagellate self-propulsion.
    Diaz K; Robinson TL; Aydin YO; Aydin E; Goldman DI; Wan KY
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34359055
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fault tolerant gait for a hexapod robot over uneven terrain.
    Yang JM; Kim JH
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):172-80. PubMed ID: 18244739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multimodal bipedal locomotion generation with passive dynamics
    Koseki S; Kutsuzawa K; Owaki D; Hayashibe M
    Front Neurorobot; 2022; 16():1054239. PubMed ID: 36756534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Learning and Reusing Quadruped Robot Movement Skills from Biological Dogs for Higher-Level Tasks.
    Wan Q; Luo A; Meng Y; Zhang C; Chi W; Zhang S; Liu Y; Zhu Q; Kong S; Yu J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202890
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Speed control in animal locomotion: transitions between symmetrical and nonsymmetrical gaits in the dog.
    Afelt Z; Błaszczyk J; Dobrzecka C
    Acta Neurobiol Exp (Wars); 1983; 43(4-5):235-50. PubMed ID: 6660051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Flexible Multimodal Sole Sensor for Legged Robot Sensing Complex Ground Information during Locomotion.
    Xu Y; Wang Z; Hao W; Zhao W; Lin W; Jin B; Ding N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ANYmal parkour: Learning agile navigation for quadrupedal robots.
    Hoeller D; Rudin N; Sako D; Hutter M
    Sci Robot; 2024 Mar; 9(88):eadi7566. PubMed ID: 38478592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climbing favours the tripod gait over alternative faster insect gaits.
    Ramdya P; Thandiackal R; Cherney R; Asselborn T; Benton R; Ijspeert AJ; Floreano D
    Nat Commun; 2017 Feb; 8():14494. PubMed ID: 28211509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Models of central pattern generators for quadruped locomotion. I. Primary gaits.
    Buono PL; Golubitsky M
    J Math Biol; 2001 Apr; 42(4):291-326. PubMed ID: 11374122
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.