These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38594288)
61. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots. Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555 [TBL] [Abstract][Full Text] [Related]
62. Central pattern generators evolved for real-time adaptation to rhythmic stimuli. Szorkovszky A; Veenstra F; Glette K Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37339660 [TBL] [Abstract][Full Text] [Related]
63. Hybrid learning mechanisms under a neural control network for various walking speed generation of a quadruped robot. Zhang Y; Thor M; Dilokthanakul N; Dai Z; Manoonpong P Neural Netw; 2023 Oct; 167():292-308. PubMed ID: 37666187 [TBL] [Abstract][Full Text] [Related]
64. Spontaneous Gait Transitions of Sprawling Quadruped Locomotion by Sensory-Driven Body-Limb Coordination Mechanisms. Suzuki S; Kano T; Ijspeert AJ; Ishiguro A Front Neurorobot; 2021; 15():645731. PubMed ID: 34393748 [TBL] [Abstract][Full Text] [Related]
65. Variable stiffness locomotion with guaranteed stability for quadruped robots traversing uneven terrains. Zhao X; Wu Y; You Y; Laurenzi A; Tsagarakis N Front Robot AI; 2022; 9():874290. PubMed ID: 36105760 [TBL] [Abstract][Full Text] [Related]
66. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs. Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ Front Robot AI; 2018; 5():67. PubMed ID: 33500946 [TBL] [Abstract][Full Text] [Related]
67. Models of central pattern generators for quadruped locomotion. II. Secondary gaits. Buono PL J Math Biol; 2001 Apr; 42(4):327-46. PubMed ID: 11374123 [TBL] [Abstract][Full Text] [Related]
68. An Untethered Soft Robotic Dog Standing and Fast Trotting with Jointless and Resilient Soft Legs. Li Y; Li Y; Ren T; Xia J; Liu H; Wu C; Lin S; Chen Y Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132535 [TBL] [Abstract][Full Text] [Related]
69. CPG-Based Gait Generation of the Curved-Leg Hexapod Robot with Smooth Gait Transition. Bai L; Hu H; Chen X; Sun Y; Ma C; Zhong Y Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31455002 [TBL] [Abstract][Full Text] [Related]
70. Self-Organizing Map With Time-Varying Structure to Plan and Control Artificial Locomotion. Araujo AF; Santana OV IEEE Trans Neural Netw Learn Syst; 2015 Aug; 26(8):1594-607. PubMed ID: 25203996 [TBL] [Abstract][Full Text] [Related]
71. Electrohydraulic musculoskeletal robotic leg for agile, adaptive, yet energy-efficient locomotion. Buchner TJK; Fukushima T; Kazemipour A; Gravert SD; Prairie M; Romanescu P; Arm P; Zhang Y; Wang X; Zhang SL; Walter J; Keplinger C; Katzschmann RK Nat Commun; 2024 Sep; 15(1):7634. PubMed ID: 39251597 [TBL] [Abstract][Full Text] [Related]
72. The quadrupedal walking gait of the olive baboon, Papio anubis: an exploratory study integrating kinematics and EMG. Druelle F; Supiot A; Meulemans S; Schouteden N; Molina-Vila P; Rimbaud B; Aerts P; Berillon G J Exp Biol; 2021 Jul; 224(14):. PubMed ID: 34292320 [TBL] [Abstract][Full Text] [Related]
73. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons. Su B; Liu YX; Gutierrez-Farewik EM Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549 [TBL] [Abstract][Full Text] [Related]
74. A CPG-Based Versatile Control Framework for Metameric Earthworm-Like Robotic Locomotion. Zhou Q; Xu J; Fang H Adv Sci (Weinh); 2023 May; 10(14):e2206336. PubMed ID: 36775888 [TBL] [Abstract][Full Text] [Related]
75. Evolving locomotion for a 12-DOF quadruped robot in simulated environments. Klaus G; Glette K; Høvin M Biosystems; 2013 May; 112(2):102-6. PubMed ID: 23499813 [TBL] [Abstract][Full Text] [Related]
76. Longitudinal quasi-static stability predicts changes in dog gait on rough terrain. Wilshin S; Reeve MA; Haynes GC; Revzen S; Koditschek DE; Spence AJ J Exp Biol; 2017 May; 220(Pt 10):1864-1874. PubMed ID: 28264903 [TBL] [Abstract][Full Text] [Related]
77. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots. Ijspeert AJ; Crespi A; Cabelguen JM Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158 [TBL] [Abstract][Full Text] [Related]
78. A galloping quadruped model using left-right asymmetry in touchdown angles. Tanase M; Ambe Y; Aoi S; Matsuno F J Biomech; 2015 Sep; 48(12):3383-9. PubMed ID: 26216144 [TBL] [Abstract][Full Text] [Related]
80. Fault-tolerant locomotion of the hexapod robot. Yang JM; Kim JH IEEE Trans Syst Man Cybern B Cybern; 1998; 28(1):109-16. PubMed ID: 18255929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]