These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38594288)

  • 81. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Combining Evolutionary and Adaptive Control Strategies for Quadruped Robotic Locomotion.
    Massi E; Vannucci L; Albanese U; Capolei MC; Vandesompele A; Urbain G; Sabatini AM; Dambre J; Laschi C; Tolu S; Falotico E
    Front Neurorobot; 2019; 13():71. PubMed ID: 31555118
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Integrated Modular Neural Control for Versatile Locomotion and Object Transportation of a Dung Beetle-Like Robot.
    Leung B; Billeschou P; Manoonpong P
    IEEE Trans Cybern; 2024 Apr; 54(4):2062-2075. PubMed ID: 37028343
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Adaptive walking control for quadruped robot by using oscillation patterns.
    Zhang Y; Qian Y; Ding Y; Hou B; Wang R
    Sci Rep; 2023 Nov; 13(1):19756. PubMed ID: 37957235
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 86. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.
    Karakasiliotis K; Thandiackal R; Melo K; Horvat T; Mahabadi NK; Tsitkov S; Cabelguen JM; Ijspeert AJ
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27358276
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: A pilot, single blind, randomized controlled trial.
    Picelli A; Chemello E; Castellazzi P; Filippetti M; Brugnera A; Gandolfi M; Waldner A; Saltuari L; Smania N
    Restor Neurol Neurosci; 2018; 36(2):161-171. PubMed ID: 29526857
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A synergetic theory of quadrupedal gaits and gait transitions.
    Schöner G; Jiang WY; Kelso JA
    J Theor Biol; 1990 Feb; 142(3):359-91. PubMed ID: 2338828
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Towards a general neural controller for quadrupedal locomotion.
    Maufroy C; Kimura H; Takase K
    Neural Netw; 2008 May; 21(4):667-81. PubMed ID: 18490136
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A collisional perspective on quadrupedal gait dynamics.
    Lee DV; Bertram JE; Anttonen JT; Ros IG; Harris SL; Biewener AA
    J R Soc Interface; 2011 Oct; 8(63):1480-6. PubMed ID: 21471189
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
    Daley MA; Channon AJ; Nolan GS; Hall J
    J Exp Biol; 2016 Oct; 219(Pt 20):3301-3308. PubMed ID: 27802152
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Body-limb coordination mechanism underlying speed-dependent gait transitions in sea roaches.
    Kano T; Ikeshita Y; Fukuhara A; Ishiguro A
    Sci Rep; 2019 Feb; 9(1):2848. PubMed ID: 30808952
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Visually guided gait modifications for stepping over an obstacle: a bio-inspired approach.
    Silva P; Matos V; Santos CP
    Biol Cybern; 2014 Feb; 108(1):103-19. PubMed ID: 24469319
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Optimization strategies to obtain smooth gait transitions through biologically plausible central pattern generators.
    Baruzzi V; Lodi M; Storace M
    Phys Rev E; 2024 Jan; 109(1-1):014404. PubMed ID: 38366407
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biologically inspired adaptive walking of a quadruped robot.
    Kimura H; Fukuoka Y; Cohen AH
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):153-70. PubMed ID: 17148054
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Learning Quadrupedal High-Speed Running on Uneven Terrain.
    Han X; Zhao M
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248611
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Spatio-temporal gait characteristics during transitions from trot to canter in horses.
    Nauwelaerts S; Aerts P; Clayton H
    Zoology (Jena); 2013 Aug; 116(4):197-204. PubMed ID: 23810157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.