BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38594473)

  • 1. Improving Sedum plumbizincicola genetic transformation with the SpGRF4-SpGIF1 gene and the self-excision CRE/LoxP system.
    Zhang Y; Mo Y; Ren H; Wu X; Han L; Sun Z; Xu W
    Planta; 2024 Apr; 259(5):119. PubMed ID: 38594473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of four endophytic bacteria on cadmium speciation and remediation efficiency of Sedum plumbizincicola in farmland soil.
    Cheng X; Cao X; Tan C; Liu L; Bai J; Liang Y; Cai R
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89557-89569. PubMed ID: 35852747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Strengthening the effect of
    Deng YQ; Cao XY; Tan CY; Sun LJ; Peng X; Bai J; Huang SP
    Ying Yong Sheng Tai Xue Bao; 2020 Sep; 31(9):3111-3118. PubMed ID: 33345513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium uptake and transfer by
    Xue Z; Wu M; Hu H; Kianpoor Kalkhajeh Y
    Int J Phytoremediation; 2021; 23(10):1052-1060. PubMed ID: 33491471
    [No Abstract]   [Full Text] [Related]  

  • 5. Impacts of simulated atmospheric cadmium deposition on the physiological response and cadmium accumulation of Sedum plumbizincicola.
    Huang S; Tan C; Cao X; Yang J; Xing Q; Tu C
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):16413-16425. PubMed ID: 38315335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation potential of wheat intercropped with different densities of Sedum plumbizincicola in soil contaminated with cadmium and zinc.
    Zou J; Song F; Lu Y; Zhuge Y; Niu Y; Lou Y; Pan H; Zhang P; Pang L
    Chemosphere; 2021 Aug; 276():130223. PubMed ID: 34088099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does phytoextraction with
    Zhou T; Huang H; Mu T; Wang Y; Zhou J; Li X; Wu L; Christie P
    Int J Phytoremediation; 2024; 26(2):241-249. PubMed ID: 37463004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies.
    Deng L; Li Z; Wang J; Liu H; Li N; Wu L; Hu P; Luo Y; Christie P
    Int J Phytoremediation; 2016; 18(2):134-40. PubMed ID: 26445166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispose waste liquor of fresh biomass of a hyperaccumulator
    Hu P; Du Y; Yang Y; Li Z; Luo Y; Wu L
    Int J Phytoremediation; 2022; 24(1):1-11. PubMed ID: 34004122
    [No Abstract]   [Full Text] [Related]  

  • 10. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc uptake and replenishment mechanisms during repeated phytoextraction using Sedum plumbizincicola revealed by stable isotope fractionation.
    Zhou J; Li Z; Zhang X; Yu H; Wu L; Huang F; Luo Y; Christie P
    Sci Total Environ; 2022 Feb; 806(Pt 3):151306. PubMed ID: 34743872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil.
    Bian F; Zhong Z; Wu S; Zhang X; Yang C; Xiong X
    Int J Phytoremediation; 2018 Apr; 20(5):490-498. PubMed ID: 28949764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of planting densities on yields and zinc and cadmium uptake by Sedum plumbizincicola].
    Liu L; Wu LH; Li N; Cui LQ; Li Z; Jiang JP; Jiang YG; Qiu XY; Luo YM
    Huan Jing Ke Xue; 2009 Nov; 30(11):3422-6. PubMed ID: 20063765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of Eisenia foetida on the metal uptake by Sedum plumbizincicola in different types of contaminated soils].
    Wang Z; Li Z; Liu H; Wu L
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):549-559. PubMed ID: 32237548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium levels and soil pH drive structure and function differentiation of endophytic bacterial communities in Sedum plumbizincicola: A field study.
    Zhang J; Na M; Wang Y; Ge W; Zhou J; Zhou S
    Sci Total Environ; 2024 Feb; 912():168828. PubMed ID: 38029975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola.
    Liu W; Wang B; Wang Q; Hou J; Wu L; Wood JL; Luo Y; Franks AE
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18621-9. PubMed ID: 27306207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A meta-analysis about the accumulation of heavy metals uptake by
    Song W; Wang J; Zhai L; Ge L; Hao S; Shi L; Lian C; Chen C; Shen Z; Chen Y
    Int J Phytoremediation; 2022; 24(7):744-752. PubMed ID: 34493098
    [No Abstract]   [Full Text] [Related]  

  • 18. A Genetic Transformation Method for Cadmium Hyperaccumulator
    Liu H; Zhao H; Wu L; Xu W
    Front Plant Sci; 2017; 8():1047. PubMed ID: 28670322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial community assembly of the hyperaccumulator plant Sedum plumbizincicola in two contrasting soil types with three levels of cadmium contamination.
    Huang Y; Huang Y; Hou J; Wu L; Christie P; Liu W
    Sci Total Environ; 2023 Mar; 863():160917. PubMed ID: 36529394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Transcriptional Regulation of Hyperaccumulation in
    Zhang Y; Mo Y; Han L; Sun Z; Xu W
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.